Skip to main content
Log in

Effects of guanidinium on EC coupling and tension generation in frog skeletal muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The effect of the chaotropic cation guanidinium on tension generation was investigated in voltage-clamped intact and mechanically skinned muscle fibres of the frog. When sodium was replaced by guanidinium in the solution a 20-mV shift of the sigmoidal activation curve towards less negative potentials was recorded. A similar shift in the voltage dependence of mechanical inactivation did not occur. The plateau phase of contractures activated by long-lasting depolarizations was significantly shortened in the presence of 77.5mm guanidinium. In a second set of experiments, charge displacement currents were measured using the cut fibre preparation. Apparently, guanidinium had no effect on the voltage dependence of intramembrane charge movement. On the other hand, this cation caused a distinct increase in the amount of charge necessary to reach the contraction threshold at rheobase voltage from 12.4 nC ΜF−1 to 23.4 nC ΜF−1. Experiments on skinned fibres containing an operating sarcoplasmic reticulum demonstrated that 5mm guanidinium diminished caffeine-induced tension development and substantially delayed the onset of the contractile response. However, guanidinium did not impair calcium-induced tension development of the contractile apparatus. These results suggest that the inhibitory action of guanidinium on excitation-contraction coupling is due to a depression of calcium release from the sarcoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H. &Peres, A. (1979) Charge movement and membrane capacity in frog muscle.J. Physiol. (Lond.) 289, 83–97.

    Google Scholar 

  • Berwe, D. &Feldmeyer, D. (1984) Investigation of force restoration in short toe muscle fibres under voltage clamp control.Pflügers Arch. ges. Physiol. 402, R46.

    Google Scholar 

  • Caputo, C. &Fernandez De Bolanos, P. (1979) Membrane potential, contractile activation and relaxation rates in voltage clamped short toe muscle fibres of the frog.J. Physiol. (Lond.) 289, 175–89.

    Google Scholar 

  • Collins, K. D. &Washabaugh, M. W. (1985) The Hofmeister effect and the behaviour of water at interfaces.Q. Rev. Biophys. 18, 323–422.

    PubMed  Google Scholar 

  • Csernoch, L., Feldmeyer, D. &Kovács, L. (1987a) The effect of the guanidinium ion upon excitation-contraction coupling in isolated skeletal muscle fibres of the frog.J. Physiol. (Lond.) 390, 150P.

    Google Scholar 

  • Csernoch, L., Kovács, L. &Szücs, G. (1987b) How caffeine modifies calcium redistribution during contractile activation in frog skeletal muscle fibres.J. Physiol. (Lond.) 382, 164P.

    Google Scholar 

  • Csernoch, L., Kovács, L. &Szücs, G. (1987c) Perchlorate modified charge movement and related changes in the contractile activation of frog skeletal muscle fibres.J. Physiol. (Lund.) 390, 213–27.

    Google Scholar 

  • Delay, M., Ribalet, B. &Vergara, J. (1986) Caffeine potentiation of calcium release in frog skeletal muscle fibres.J. Physiol. (Lond.) 375, 535–59.

    Google Scholar 

  • Endo, M., Tanaka, M. &Ogawa, Y. (1970) Calciuminduced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres.Nature 228, 34–6.

    PubMed  Google Scholar 

  • Feldmeyer, D. &Lüttgau, H. Ch. (1988) The effect of perchlorate on Ca currents and contraction force in skeletal muscle fibres.Pflügers Arch. ges. Physiol. 411, R190.

    Google Scholar 

  • Foulks, J. G., Miller, J. A. D. &Perry, F. A. (1973) Repolarization-induced reactivation of contracture tension in frog skeletal muscle.Can. J. Physiol. Pharmacol. 51, 324–34.

    PubMed  Google Scholar 

  • Foulks, J. G. &Perry, F. A. (1979) The effects of temperature, local anesthetics, group-specific agents on repriming and repolarization-induced contractures in frog skeletal muscle.Can. J. Physiol. Pharmacol. 57, 619–30.

    PubMed  Google Scholar 

  • Frankenhaeuser, B. &Lännergren, J. (1967) The effect of calcium on the mechanical response of single twitch muscle fibres ofXenopus laevis.Acta Physiol. Scand. 69, 242–54.

    PubMed  Google Scholar 

  • Garcia-Diaz, D. &Sanchez, J. A. (1988) Lyotropic anions and charge movement in frog skeletal muscle.Biophys. J. 53, 334a.

    Google Scholar 

  • Gomolla, M., Gottschalk, G. &Lüttgau, H. Ch. (1983) Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres.J. Physiol. (Lond). 343, 197–214.

    Google Scholar 

  • Hammes, G. G. &Swann, J. C. (1967) Influence of denaturing agents on solvent structure.Biochemistry 6, 1591–6.

    PubMed  Google Scholar 

  • Horowicz, P. &Schneider, M. F. (1981a) Membrane charge movement in contracting and non-contracting skeletal muscle fibres.J. Physiol. (Lond.) 314, 565–93.

    Google Scholar 

  • Horowicz, P. &Schneider, M. F. (1981b) Membrane charge moved at contraction thresholds in skeletal muscle fibres.J. Physiol. (Lond.) 314, 595–633.

    Google Scholar 

  • Huang, C. L.-H. (1986) The differential effects of twitch potentiators on charge movements in frog skeletal muscle.J. Physiol. (Lond.) 356, 375–90.

    Google Scholar 

  • Kovács, L., Ríos, E. &Schneider, M. F. (1979) Calcium transients and intramembrane charge movement in skeletal muscle fibres.Nature 279, 391–6.

    Google Scholar 

  • Kovács, L. &Schneider, M. F. (1978) Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres.J. Physiol. (Lond.) 277, 483–506.

    Google Scholar 

  • Kovács, L. &Szücs, G. (1983) The effect of caffeine on intramembrane charge movement and calcium transients of cut skeletal muscle fibres of the frog.J. Physiol. (Lond.) 341, 559–78.

    Google Scholar 

  • Lüttgau, H. Ch., Gottschalk, G., Kovács, L. &Fuxreiter, M. (1983) How perchlorate improves excitation-contraction coupling in skeletal muscle fibres.Biophys. J. 43, 9.

    Google Scholar 

  • Lüttgau, H. C. &Oetliker, H. (1968) The action of caffeine on the contractile mechanism in striated muscle fibres.J. Physiol. (Lond.) 194, 51–74.

    Google Scholar 

  • Moisescu, D. G. &Thieleczek, R. (1978) Calcium and strontium concentration changes within skinned muscle fibre preparations following a change of the external bathing solution.J. Physiol. (Lond.) 275, 241–62.

    Google Scholar 

  • Sawyer, W. H. &Puckridge, J. (1973) The dissociation of proteins by chaotropic salts.J. biol. Chem. 248, 8429–33.

    PubMed  Google Scholar 

  • Scarborough, J. B. (ed.) (1966)Numerical mathematical analysis, Vol. 6. Baltimore, MD: John Hopkins University Press.

    Google Scholar 

  • Schneider, M. F. &Chandler, W. K. (1973) Voltagedependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling.Nature 242, 244–6.

    PubMed  Google Scholar 

  • Stephenson, D. G. &Thieleczek, R. (1986) Activation of the contractile apparatus of skinned fibres of the frog by the divalent cations barium, cadmium and nickel.J. Physiol (Lond.) 380, 75–92.

    Google Scholar 

  • Stephenson, E. W. (1981) Ca2+ dependence of stimulated45Ca efflux in skinned muscle fibers.J. Gen. Physiol. 77, 419–43.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmeyer, D., Csernoch, L., Kovács, L. et al. Effects of guanidinium on EC coupling and tension generation in frog skeletal muscle. J Muscle Res Cell Motil 9, 541–551 (1988). https://doi.org/10.1007/BF01738759

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738759

Keywords

Navigation