Skip to main content
Log in

Radiolysis, racemization and the origin of molecular asymmetry in the biosphere

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

An investigation has been undertaken to determine whether ionizing radiation might engender racemization of optically active amino acids, along with their usual radiolysis. As prototypes, crystalline D- and L-leucine, as well as aqueous solutions of their sodium salts were exposed to the radiation from a 3000 Ci60Coγ-ray source.γ-ray doses which caused about 68% radiolysis of solid leucine left a residue which was about 5% racemized, while racemization proved even greater at lower doses for the dissolved sodium salts. In aqueous solution both percent degradation and percent racemization of the sodium salts were proportional toγ-ray dosage within the range employed (1−27 · 106 rads). Implications of these observations for the origin of molecular asymmetry by theβ-decay parity violation mechanism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonner, W.A. (1973). J. Chromatographic Sci.11, 101–104

    Google Scholar 

  • Bonner, W.A. (1974a). J. Mol. Evol.4, 23–39

    Google Scholar 

  • Bonner, W.A., Van Dort, M.A., Flores, J.J. (1974b). Analyt. Chem.46, 2104–2107

    Google Scholar 

  • Bonner, W.A., Van Dort, M.A., Yearian, M.R. (1975). Nature258, 419–421

    Google Scholar 

  • Bonner, W.A., Van Dort, M.A., Yearian, M.R., Zeman, H.D., Li, G.C. (1977). Israel J. Chem.15, 89

    Google Scholar 

  • Bonner, W.A., Lemmon, R.M., Noyes, H.P. (1978). J. Org. Chem.43, 522

    Google Scholar 

  • Darge, W., Laczko, I., Thiemann, W. (1976). Nature261, 522–524

    Google Scholar 

  • Evans, E.A. (1966). Nature209, 169

    Google Scholar 

  • Feng, P.Y., Tobery, S.W. (1959). J. Phys. Chem.63, 759–760

    Google Scholar 

  • Garay, A.S. (1968). Nature219, 338–340

    Google Scholar 

  • Goldhaber, M., Grodzins, L., Sunyar, A.W. (1957). Phys. Rev.106, 826–828

    Google Scholar 

  • Keszthelyi, L. (1976a). Nature264, 197

    Google Scholar 

  • Keszthelyi, L. (1976b). Origins of Life7, 349–354

    Google Scholar 

  • Lee, T.D., Yang, C.M. (1956). Phys. Rev.104, 254–258

    Google Scholar 

  • Noyes, H.P., Bonner, W.A., Tomlin, J.A. (1977). Origins of Life8, 21–23

    Google Scholar 

  • Schopper, H., Galster, S. (1958). Nuc. Phys.6, 125–131

    Google Scholar 

  • Ulbricht, T.L.V. (1959). Q. Rev. Chem. Soc.13, 48–60

    Google Scholar 

  • Ulbricht, T.L.V., Vester, F. (1962). Tetrahedron18, 629–637

    Google Scholar 

  • Vester, F. (1957). Seminar at Yale University, Feb.7, 1957

    Google Scholar 

  • Vester, F., Ulbricht, T.L.V., Krauch, M. (1959). Naturwissenschaft46, 68

    Google Scholar 

  • Walker, D.C. (1976). Origins of Life7, 383–387

    Google Scholar 

  • Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P. (1957). Phys. Rev.105, 1413

    Google Scholar 

  • Wyard, S.J. (1955). Nucleonics13, 44–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonner, W.A., Lemmon, R.M. Radiolysis, racemization and the origin of molecular asymmetry in the biosphere. J Mol Evol 11, 95–99 (1978). https://doi.org/10.1007/BF01733885

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01733885

Key words

Navigation