Skip to main content
Log in

Smectite clays in Mars soil: Evidence for their presence and role in Viking biology experimental results

  • The Oxidizing Environment
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160°C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low ‘1st peak’ and significant ‘2nd peak’.

The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.M., Banin, A. (1975). Origins of Life6, 23–36

    Google Scholar 

  • Baird, A.K., Toulmin, P., Clark, B.C., Rose, H.J., Keil, K., Christian, R.P., Gooding, J. L. (1976). Science194, 1288–1293

    Google Scholar 

  • Banin, A. (1973). U.S. Patent No. 3, 725, 528

    Google Scholar 

  • Banin, A., Lahav, N. (1968a). Nature217, 1146–1147

    Google Scholar 

  • Banin, A., Lahav, N. (1968b). Israel J. Chem.6, 235–250.

    Google Scholar 

  • Banin, A., Rishpon, J. (1978) Proc. XXI COSPAR Plenary Meeting, Innsbruck, Austria; Life Sci. and Space Res.XVII, Holmquist, R., ed., pp 59–64, Oxford: Pergamon

    Google Scholar 

  • Banin, A., Shaked, D. (1969). Proc. 3rd Intl. Conf. A.I.P.E.A., TokyoI, 669–682

    Google Scholar 

  • Bragg, S.L. (1977). Characterisitics of Martian soil at Chryse Planitia as inferred by reflectance properties, magnetic properties and dust accumulation on Viking Lander 1. M. Sc. Thesis, Washington University. St. Louis

  • Carr, M.H. (1979). 2nd Internat. Colloquium on Mars, NASA, Pasadena, CA., Jan. 15, 1979

  • Chen, Y., Shaked, D., Banin, A. (1979). Clay Miner.14, 93–102

    Google Scholar 

  • Farmer, C.B., Davies, D.W., Holland, A.L., LaPorte, D.D., Doms, P.E. (1977). J. Geophys. Res.82, 4225–4248

    Google Scholar 

  • Horowitz, N.H., Hobby, G.L., Hubbard, J.S. (1977) J. Geophys. Res.82, 4659–4662

    Google Scholar 

  • Hubbard, J.S. (1979). J. Mol. Evol.14, 211–221

    Google Scholar 

  • Huck, E.O., Jobson, D.I., Park, S.K., Wall, S.S., Arvidson, R.E., Patterson, E.R., Benton, W.D. (1977). J. Geophys. Res.82, 4401–4411

    Google Scholar 

  • Huguenin, R.I. (1976a). Cont. No. 175, Remote Sensing Laboratory, M.I.T.

  • Huguenin, R.I. (1976b). Icarus28, 203–212

    Google Scholar 

  • Huguenin, R.I., Miller, K.J., Harwood, W.S. (1978). 2nd Ames Conf. on Simulation of Mars Surface Properties, NASA, Moffett Field, CA

  • Hunt, G.R., Logan, L.M., Salisbury, J.W. (1973). Icarus18, 459–469

    Google Scholar 

  • Klein, H.P. (1977). J. Geophys. Res.82, 4677–4680

    Google Scholar 

  • Klein, H.P. (1978). Icarus34, 666–674

    Google Scholar 

  • Levin, G.V., Straat, P.A. (1976). Origins of Life7, 293–311

    Google Scholar 

  • Levin, G.V., Straat, P.A. (1977a). Biosystems9, 165–174

    Google Scholar 

  • Levin, G.V., Straat, P.A. (1977b). J. Geophys. Res.82, 4659–4662

    Google Scholar 

  • Levin, G.V., Straat, P.A., Benton, W.D. (1978). J. Theor. Biol.75, 381–390

    Google Scholar 

  • Mars, P., Schulten, J.J.F., Zwietering P. (1963). Adv. in Catalysis14, 35–113

    Google Scholar 

  • Nussinov, M.D., Chernyak, Y.B., Ettinger, J.L. (1978). Nature274, 859–861

    Google Scholar 

  • Oyama, V.I., Berdahl, B.J., Woeller, F., Lehwalt, M. (1977). Life Sci. and Space Res. XVI, 3–9

    Google Scholar 

  • Oyama, V.I., Berdahl, B.J. (1977). J. Geophys. Res.82, 4669–4676

    Google Scholar 

  • Pang, K., Ajello, J.M. (1977). Icarus30, 63–74

    Google Scholar 

  • Plumb, R.C. (1978). 2nd Ames Conf. on Simulation of Mars Surface Properties, NASA, Moffett Field, CA.

  • Pollack, J.B., Colburn, D., Kahn, R., Hunter, J., Van Camp, W., Carlston, C.E., Wolf, M.R. (1977). J. Geophys. Res.82, 4479–4496

    Google Scholar 

  • Ross, C.S., Hendricks, S.B. (1945). Minerals of the montmorillonite group. U.S. Geol. Surv. Prof. Pap. 205-B

  • Trillo, J.M., Munuera, G., Criado, J.M. (1973). Catalysis Rev.7, 51–96

    Google Scholar 

  • Toon, O.B. (1979). 2nd Internat. Colloquium on Mars, NASA, Pasadena, CA, Jan.17, 1979

  • Toulmin, P., Baird, A.K., Clark, B.C., Keil, K., Rose, H.J., Evans, P.H., Kelliher, W.C. (1977). J. Geophys. Res.82, 4625–4634

    Google Scholar 

  • Weaver, C.G., Pollard, L.D. (1973). The chemistry of clay minerals, Amsterdam: Elsevier

    Google Scholar 

  • Weaver, R.M., Jackson, M.L., Seyers, J.K. (1971). Soil Sci. Soc. Am. Proc.35, 823–830

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banin, A., Rishpon, J. Smectite clays in Mars soil: Evidence for their presence and role in Viking biology experimental results. J Mol Evol 14, 133–152 (1979). https://doi.org/10.1007/BF01732373

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732373

Key words

Navigation