Skip to main content
Log in

From melt flow index to rheogram

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A knowledge of the complete flow curve or rheogram of a polymeric melt depicting the variation of the melt viscosity over industrially relevant range of shear rate and temperature is essential in the design of polymer processing equipment, process optimization and trouble-shooting. These data are generated on sophisticated rheometers that are beyond the financial and technical means of most plastics processors. The only flow parameter available to the processor is the melt flow index of the material.

In the present work, a method has been proposed to estimate the rheograms of a melt at temperatures relevant to its processing conditions with the use of a master curve, knowing the melt flow index and glass transition temperature of the material. Master curves that coalesce rheograms of different grades at various temperatures have been generated and presented for low density polyethylene, high density polyethylene, polypropylene, polystyrene and styrene-acrylonitrile copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

diameter of the tube (cm)

K, K′ :

constants

l :

length of the tube (cm)

L :

weight of piston and load (kg)

MFI:

melt flow index (g/10 min)

ΔP :

pressure drop through tube (dynes/cm2)

Q :

volumetric flow rate (cm3)

T 1 :

temperature at condition 1 (K)

T 2 :

temperature at condition 2 (K)

T g :

glass transition temperature (K)

T s :

standard reference temperature (K) (=T g + 50 K)

V :

average velocity (cm/s)

W :

weight rate of flow (g)

\(\dot \gamma \) :

shear rate (s−1)

\(\dot \gamma _a \) :

apparent shear rate (s−1)

η 1 :

viscosity at condition 1 (poise)

η a :

apparent viscosity (poise)

η s :

viscosity at standard temperature (poise)

ρ :

density (g/cm3)

τ :

shear stress (dynes/cm2)

References

  1. Van Krevelan, D. W., Properties of Polymers, p. 488, Elsevier Scientific Publishing Company (Amsterdam 1976).

    Google Scholar 

  2. Shida, M., L. V. Cancia, Polym. Engg. Sci.11, 124 (1971).

    Article  CAS  Google Scholar 

  3. Smith, D. J., TAPPI60, 131 (1977).

    CAS  Google Scholar 

  4. Borzenski, F. J., Plastics Compounding25 (Sept./Oct. 1978).

  5. Menges, G., J. Wortberg, W. Michaeli, Kunststoffe68, 47 (1973).

    Google Scholar 

  6. Plastics Engineering7, 18 (1979).

  7. Boenig, H. V., Polyolefins, p. 262, Elsevier Scientific Publishing Company (Amsterdam 1966).

    Google Scholar 

  8. Vinogradov, G. V., A. Ya. Malkin, J. Polym. Sci. A2,4, 135 (1966).

    Article  CAS  Google Scholar 

  9. Mendelson, R. A., Trans. Soc. Rheol.9, 3 (1965).

    Article  Google Scholar 

  10. Dutta, A., Ph. D. Thesis, S.U.N.Y. Buffalo (1981).

  11. Kataoka, T., T. Kitano, M. Sasahara, K. Nishijima, Rheol. Acta17, 149 (1978).

    Article  CAS  Google Scholar 

  12. Private Communication with G. A. Vaughan, Technical Service Engineer, USS Novamont, Inc., West Virginie (USA).

  13. Private Communication with J. P. Whelan, Senior Divisional Engineer, Amoco Chemicals Corporation, Illinois (USA).

  14. Private Communication with Dow Chemicals, Michigan (USA).

  15. Private Communication with H. A. Biletech. Manager, LTDC, Polysar Inc., Massachusetts (USA).

Download references

Author information

Authors and Affiliations

Authors

Additional information

NCL Communication Number 2903.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, A.V., Chattopadhyay, S. & Nadkarni, V.M. From melt flow index to rheogram. Rheol Acta 22, 90–101 (1983). https://doi.org/10.1007/BF01679833

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01679833

Key words

Navigation