Skip to main content
Log in

Thermodynamic cycle integration by computer simulation as a tool for obtaining free energy differences in molecular chemistry

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new and promising development in the field of computer simulation of molecular systems is the socalled thermodynamic cycle integration technique, which combines well-known results from statistical thermodynamics with powerful computer simulation methods. The basic formulas, the development and the applications in the areas of drug design, protein engineering and conformational analysis of this elegant technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Gunsteren, W.F. and Berendsen, H.J.C., Biochem. Soc. Trans., 10 (1982) 301–305.

    Google Scholar 

  2. Hermans, J. (Ed) Molecular Dynamics and Protein Structure, Polycrystal Book Service, P.O. Box 27, Western Springs. IL 60558, 1985.

    Google Scholar 

  3. Ciccotti, G. and Hoover, W.G. (Eds.) Proceedings of the International School of Physics ‘Enrico Fermi’, course 97, on Molecular Dynamics Simulation of Statistical-Mechanical Systems, North-Holland, Amsterdam, 1986.

    Google Scholar 

  4. McCammon, J.A. and Harvey, S.C., Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  5. Quirke, N. and Jacucci, G., Molec. Phys., 45 (1982) 823–838.

    Google Scholar 

  6. Berendsen, H.J.C., Postma, J.P.M. and van Gunsteren, W.F., In Hermans, J. (Ed) Molecular Dynamics and Protein Structure, Polycrystal Book Service, Western Springs, 1985, p. 43–46.

    Google Scholar 

  7. Frenkel, D., In Ciccotti, G. and Hoover, W.G. (Eds) Proceedings of the International School of Physics ‘Enrico Fermi’, course 97, North-Holland, Amsterdam, 1986, p. 151–188.

    Google Scholar 

  8. Mezei, M. and Beveridge, D.L., Ann. N.Y. Acad. Sci., 482 (1986) 1–23.

    Google Scholar 

  9. Kirkwood, J.G., J. Chem. Phys., 3 (1935) 300–313.

    Google Scholar 

  10. Zwanzig, R.W., J. Chem. Phys., 22 (1954) 1420–1426.

    Google Scholar 

  11. Torrie, G.M. and Vallcau, J.P., Chem. Phys. Letters. 28 (1974) 578–581.

    Google Scholar 

  12. Okazaki, S., Nakanishi, K., Touhara, H. and Adachi, Y., J. Chem. Phys., 71 (1979) 2421–2429.

    Google Scholar 

  13. Postma, J.P.M., Berendsen, H.J.C. and Haak, J.R., Faraday Symp. Chem. Soc. 17 (1982) 55–67.

    Google Scholar 

  14. Tembe, B.L. and McCammon, J.A., Comput. Chem., 8 (1984) 281–283.

    Google Scholar 

  15. Jorgensen, W.L. and Ravimohan, C., J. Chem. Phys., 83 (1985) 3050–3054.

    Google Scholar 

  16. Mruzik, M.R., Abraham, F.F. and Pound, G.M., J. Chem. Phys., 64 (1976) 481–491.

    Google Scholar 

  17. Berens, P.H., Mackay, D.H.J., White, G.M. and Wilson, K.R., J. Chem. Phys. 79 (1983) 2375–2389.

    Google Scholar 

  18. Mezei, M., Swaminathan, S. and Beveridge, D.L., J. Am. Chem. Soc., 100 (1978) 3255–3256.

    Google Scholar 

  19. Postma, J.P.M., Molecular Dynamics of H2O, thesis. University of Groningen, 1985.

  20. Van Gunsteren, W.F. and Berendsen, H.J.C., In Stozowski, J. (Ed) Proceedings of the Symposium on Computational Methods in Chemical Design: Molecular Modelling and Graphics. Elmau. 1986. Oxford University Press, Oxford. 1987.

    Google Scholar 

  21. Straatsma, T.P., Berendsen, H.J.C. and Postma, J.P.M., J. Chem. Phys., 85 (1986) 6720–6727.

    Google Scholar 

  22. Lybrand, T.P., Gosh, I. and McCammon, J.A., J. Amer. Chem. Soc., 107 (1985) 7793–7794.

    Google Scholar 

  23. Bash, P.A., Singh, U.C., Langridge, R. and Kollman, P.A., Science (in press).

  24. Lybrand, T.P., McCammon, J.A. and Wipff, G., Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 833–835.

    Google Scholar 

  25. Wong, C.F. and McCammon, J.A., J. Amer. Chem. Soc. (in press).

  26. Bash, P.A., Singh, U.C., Brown, F.K., Langridge, R. and Kollman, P.A., Science, 235 (1987) 574–576.

    Google Scholar 

  27. Wong, C.F. and McCammon, J.A., 1sr. J. Chem. (in press).

  28. Bash, P.A., Singh. U.C., Langridge, R. and Kollman, P.A., Science (in press).

  29. Cross, A.J., Chem. Phys. Letters. 128 (1986) 198–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gunsteren, W.F., Berendsen, H.J.C. Thermodynamic cycle integration by computer simulation as a tool for obtaining free energy differences in molecular chemistry. J Computer-Aided Mol Des 1, 171–176 (1987). https://doi.org/10.1007/BF01676960

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01676960

Key words

Navigation