Skip to main content
Log in

Light and electron microscopic immunocytochemical analysis of the serotonin innervation of the rat visual cortex

  • Published:
Journal of Neurocytology

Summary

The serotonin afferents of the rat visual cortex were examined immunocytochemically at the light and electron microscopic levels. Immunoreactive fibres were typically thin, tortuous and varicose. Occasionally, some thicker fibres were found. The orientation of labelled axons varied according to laminar position, with fibres running parallel to the pial surface present mainly in layers I and VI, and radially oriented fibres prominent in layers II and III. Branches arising from horizontal or radially oriented fibres were seen to form irregularly shaped loops particularly in layers IV and V. The density of innervation and the prevailing axonal orientation in each cortical layer were similar in both coronal and parasagittal planes.

The ultrastructural features of serotonin-labelled axon terminals were examined in single and serial ultrathin sections. While in single sections the majority did not exhibit synaptic specializations, extensive serial section analysis showed that virtually all of these terminals were engaged in junctional complexes. Postsynaptic elements were spines and dendritic shafts, including pyramidal cell apical dendrites, with both symmetrical and asymmetrical membrane specializations. In axospinous synapses, the labelled terminals were usually adjacent to unstained axon terminals contacting the same postsynaptic element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajika, K. &Hökfelt, T. (1973) Ultrastructural identification of catecholamine neurones in the hypothalamic periventricular-arcuate nucleus-median eminence complex with special reference to quantitative aspects.Brain Research 57, 97–117.

    Google Scholar 

  • Arluison, M., Agid, Y. &Javoy, E. (1978) Dopaminergic nerve endings in the neostriatum of the rat. I. Identification by intracerebral injections of 5-hydroxydopamine.Neuroscience 3, 657–73.

    Google Scholar 

  • Beaudet, A. &Descarries, L. (1976) Quantitative data on serotonin nerve terminals in adult rat neocortex.Brain Research 111, 301–9.

    Google Scholar 

  • Beaudet, A. &Descarries, L. (1978). The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals.Neuroscience 3, 851–60.

    Google Scholar 

  • Beaudet, A. &Descarries, L. (1984) Fine structure of monoamine axon terminals in cerebral cortex. InMonoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 77–93. New York: Alan R. Liss.

    Google Scholar 

  • Berger, B. &Verney, C. (1984) Development of the catecholamine innervation in rat neocortex: morphological features. InMonoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 95–121. New York: Alan R. Liss.

    Google Scholar 

  • Blue, M. &Molliver, M. E. (1987) 6-Hydroxydopamine induces serotonergic axon sprouting in cerebral cortex of newborn rat.Developmental Brain Research 32, 255–70.

    Google Scholar 

  • Brown, R. M., Crane, A. M. &Goldman, P. S. (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: Concentrations and in vivo synthesis rates.Brain Research 168, 133–50.

    Google Scholar 

  • Carlsson, A., Falck, B. &Hillarp, N.-A. (1962) Cellular localization of brain monoamines.Acta physiologica scandinavica 56, Suppl. 196, 1–28.

    Google Scholar 

  • Chan-Palay, V. (1975) Fine structure of labelled axons in the cerebellar cortex and nuclei of rodents and primates after intraventricular infusions with tritiated serotonin.Anatomy and Embryology 148, 235–65.

    Google Scholar 

  • Chan-Palay, V. (1976) Serotonin axons in the supra- and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity.Brain Research 102, 103–30.

    Google Scholar 

  • Chan-Palay, V. (1978a) The paratrigeminal nucleus. II. Identification and interrelations of catecholamine axons, indoleamine axons, and Substance P immunoreactive cells in the neuropil.Journal of Neurocytology 7, 419–42.

    Google Scholar 

  • Chan-Palay, V. (1978b) Morphological correlates for transmitter synthesis, transport, release, uptake and catabolism: a study of serotonin neurons in the nucleus paragigantocellularis lateralis. InAmino Acids as Chemical Transmitters (edited byFonnum, F.), pp. 1–30. New York: Plenum Press.

    Google Scholar 

  • Cuello, A. C. &Iversen, L. L. (1978) Interactions of dopamine with other neurotransmitters in the rat substantia nigra: a possible functional role of dendritic dopamine. InInteractions Between Putative Neurotransmitters in the Brain (edited byGarattini, S., Pujol, J. F. &Samanin, R.), pp. 127–49. New York: Raven Press.

    Google Scholar 

  • Descarries, L., Beaudet, A. &Watkins, K. C. (1975) Serotonin nerve terminals in adult rat neocortex.Brain Research 100, 563–88.

    Google Scholar 

  • Descarries, L., Watkins, K. C. &Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rat: III. Topometric ultrastructural analysis.Brain Research 133, 197–222.

    Google Scholar 

  • Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system.Acta physiologica scandinavica 64, Suppl. 247, 39–85.

    Google Scholar 

  • Fuxe, K., Hamberger, B. &Hökfelt, T. (1968a) Distribution of noradrenaline nerve terminals in cortical areas of the rat.Brain Research 8, 125–31.

    Google Scholar 

  • Fuxe, K., Hökfelt, T. &Ungerstedt, U. (1968b) Localization of indolealkylamines in CNS. InAdvances in Pharmacology, part A, Vol. 6 (edited byGarattini, S. &Shore, P. A.), pp. 235–51. New York: Academic Press.

    Google Scholar 

  • Gaudin-Chazal, G., Daszuta, A., Faudom, M. &Ternaux, J. P. (1979) 5-HT concentration in cat's brain.Brain Research 160, 281–93.

    Google Scholar 

  • Geffard, M., Dulluc, J. &Rock, A.-M. (1985) Antisera against the indolealkylamines: tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-methoxytryptophan, and 5-methoxytryptamine tested by an enzymelinked immunosorbent assay method.Journal of Neurochemistry 44, 1221–8.

    Google Scholar 

  • Glowinski, J. (1984) Functional properties: introductory remarks. InMonoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 229–31. New York: Alan R. Liss.

    Google Scholar 

  • Goldman-Rakic, P. S. &Brown, R. M. (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys.Developmental Brain Research 4, 339–49.

    Google Scholar 

  • Groves, P. M. (1980) Synaptic endings and their postsynaptic targets in neostriatum: synaptic specializations revealed from analysis of serial sections.Proceedings of the National Academy of Sciences USA 77, 6926–9.

    Google Scholar 

  • Groves, P. M. &Wilson, C. J. (1980) Monoaminergic presynaptic axons and dendrites in rat locus coeruleus seen in reconstructions of serial sections.Journal of Comparative Neurology 193, 853–62.

    Google Scholar 

  • Hökfelt, T. (1968)In vitro studies on central and peripheral monoamine neurons at the ultrastructural level.Zeitschrift für Zellforschung und mikroskopische Anatomie 91, 1–74.

    Google Scholar 

  • Itakura, T., Kasamatsu, T. &Pettigrew, J. D. (1981) Norepinephrine-containing terminals in kitten visual cortex: laminar distribution and ultrastructure.Neuroscience 6, 159–75.

    Google Scholar 

  • Koda, L. Y. &Bloom, F. E. (1977) A light and electron microscopic study of noradrenergic terminals in the rat dentate gyrus.Brain Research 120, 327–35.

    Google Scholar 

  • Köhler, C., Chan-Palay, V. &Steinbusch, H. (1981) The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areas. An immunohistochemical study with anti-serotonin antibodies in the rat's brain.Anatomy and Embryology 161, 237–64.

    Google Scholar 

  • Kosofsky, B. E. &Molliver, M. E. (1987) The serotonergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei.Synapse 1, 153–68.

    Google Scholar 

  • Kosofsky, B. E., Molliver, M. E., Morrison, J. H. &Foote, S. L. (1984) The serotonin and norepinephrine innervation of primary visual cortex in cynomolgus monkey (Macaca fascicularis).Journal of Comparative Neurology 230, 168–78.

    Google Scholar 

  • Krieg, W. G. S. (1946) Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas.Journal of Comparative Neurology 84, 221–76.

    Google Scholar 

  • Lidov, H. G. W., Grzanna, R. &Molliver, M. E. (1980) The serotonin innervation of the cerebral cortex in the rat — an immunohistochemical analysis.Neuroscience 5, 207–27.

    Google Scholar 

  • Lindvall, O. &Björklund, A. (1978) Organization of catecholamine neurons in the rat central nervous system. InHandbook of Psychopharmacology, Vol. 9 (edited byIversen, L. L., Iversen, S. D. &Snyder, S. H.), pp. 139–231. New York: Plenum Press.

    Google Scholar 

  • Lindvall, O. &Björklund, A. (1984) General organization of cortical monoamine systems. InMonoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 9–40. New York: Alan R. Liss.

    Google Scholar 

  • McRae-Degueurce, A. &Geffard, M. (1986) One perfusion mixture for immunocytochemical detection of noradrenaline, dopamine, serotonin and acetylcholine in the same rat brain.Brain Research 376, 217–19.

    Google Scholar 

  • Molliver, M. E., Grzanna, R., Lidov, H. G. W., Morrison, J. H. &Olschowka, J. A. (1982) Monoamine systems in the cerebral cortex. InCytochemical Methods in Neuroanatomy (edited byChan-Palay, V. &Palay, S. L.), pp. 255–77. New York: Alan R. Liss.

    Google Scholar 

  • Moore, R. Y. &Bloom, F. E. (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems.Annual Review of Neurosciences 1, 129–69.

    Google Scholar 

  • Moore, R. Y. &Bloom, F. E. (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems.Annual Review of Neurosciences 2, 113–68.

    Google Scholar 

  • Morrison, J. H. &Foote, S. L. (1986) Noradrenergic and serotonergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys.Journal of Comparative Neurology 243, 117–38.

    Google Scholar 

  • Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E. &Lidov, H. G. W. (1982) Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: an immunohistochemical study.Proceedings of the National Academy of Sciences USA 79, 2401–5.

    Google Scholar 

  • Moruzzi, G. &Magoun, H. W. (1949) Brain stem reticular formation and activation of the EEG.Electroencephalography and Clinical Neurophysiology 1, 455–73.

    Google Scholar 

  • Olschowka, J. A., Molliver, M. E., Grzanna, R., Rice, F. L. &Coyle, J. T. (1981) Ultrastructural demonstration of noradrenergic synapses in the rat cental nervous system by dopamine-β-hydroxylase immunocytochemistry.Journal of Histochemistry and Cytochemistry 29, 271–80.

    Google Scholar 

  • Papadopoulos, G. C., Parnavelas, J. G. &Buijs, R. M. (1988) Light and electron microscopic immunocytochemical analysis of the noradrenaline innervation of the rat visual cortex.Neuroscience (in press).

  • Parnavelas, J. G., Moises, H. C. &Speciale, S. G. (1985) The monoaminergic innervation of the rat visual cortex.Proceedings of the Royal Society of London, Series B 223, 319–29.

    Google Scholar 

  • Pickel, V. M., Joh, T. H., Chan, J. &Beaudet, A. (1984) Serotoninergic terminals: ultrastructure and synaptic interaction with catecholamine-containing neurons in the medial nuclei of the solitary tracts.Journal of Comparative Neurology 225, 291–301.

    Google Scholar 

  • Reader, T. A. (1981) Distribution of catecholamines and serotonin in the rat cerebral cortex: absolute levels and relative proportions.Journal of Neural Transmission 50, 13–27.

    Google Scholar 

  • Reader, T. A. &Jasper, H. H. (1984) Interactions between monoamines and other transmitters in cerebral cortex. InMonoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 195–225. New York: Alan R. Liss.

    Google Scholar 

  • Reader, T. A., Maase, P. &De Champlain, J. (1979) The intracortical distribution of norepinephrine, dopamine and serotonin in the cerebral cortex of the cat.Brain Research 177, 499–513.

    Google Scholar 

  • Richards, J. G., Lopez, H. P. &Tranzer, J. P. (1973) Indolealkylamine nerve terminals in cerebral ventricles: identifications by electron microscopy and fluorescence histochemistry.Brain Research 57, 277–88.

    Google Scholar 

  • Ruda, M. A., Coffield, J. &Steinbush, H. W. M. (1982) Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat.Journal of Neuroscience 2, 1660–71.

    Google Scholar 

  • Sano, Y., Takeuchi, Y., Kimura, H., Goto, M., Kawata, M., Kojima, M., Matsuura, T., Ueda, S. &Yamada, H. (1982) Immunohistochemical studies on the processes of serotonin neurons and their ramification in the central nervous system — with regard to the possibility of the existence of Golgi's rete nervosa diffusa.Archivum Histologicum Japonicum 45, 305–16.

    Google Scholar 

  • Soghomonian, J.-J., Descarries, L. &Lanoir, J. (1986) Monoamine innervation of the oculomotor nucleus in the rat. A radioautographic study.Neuroscience 17, 1147–57.

    Google Scholar 

  • Steinbusch, H. W. M. (1981) Distribution of serotoninimmunoreactivity in the central nervous system of the rat — cell bodies and terminals.Neuroscience 6, 557–618.

    Google Scholar 

  • Sternberger, L. A. (1979)Immunocytochemistry. New York: John Wiley.

    Google Scholar 

  • Takeuchi, Y. &Sano, Y. (1983) Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata).Anatomy and Embryology 166, 155–68.

    Google Scholar 

  • Takeuchi, Y. &Sano, Y. (1984) Serotonin nerve fibers in the primary visual cortex of the monkey. Quantitative and immunoelectronmicroscopical analysis.Anatomy and Embryology 169, 1–8.

    Google Scholar 

  • Tennyson, V. M., Heikkila, R., Mytilineou, C., Cote, L. &Cohen, G. (1974) 5-Hydroxydopamine ‘tagged’ neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane.Brain Research 82, 341–8.

    Google Scholar 

  • Törk, I. &Mulligan, K. A. (1984) Dense serotonergic innervation of select cortical neurons in cat neocortex.Society for Neuroscience Abstracts 10, 63.

    Google Scholar 

  • Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain.Acta physiologica scandinavica, Suppl.367, 1–48.

    Google Scholar 

  • Wilson, C. J., Groves, P. M. &Fifkova, E. (1977) Monoaminergic synapses, including dendro-dendritic synapses in the rat substantia nigra.Experimental Brain Research 30, 161–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, G.C., Parnavelas, J.G. & Buijs, R.M. Light and electron microscopic immunocytochemical analysis of the serotonin innervation of the rat visual cortex. J Neurocytol 16, 883–892 (1987). https://doi.org/10.1007/BF01611992

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611992

Keywords

Navigation