Skip to main content
Log in

Effect of wall heat conduction on laminar mixed convection in the thermal entrance region of horizontal rectangular channels

Einfluß der Wandwärmeleitung auf die laminare Mischkonvektion in der thermischen Eintrittszone von horizontalen, rechteckigen Kanälen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of the effect of peripheral wall heat conduction on laminar mixed convection in the thermal entrance region of horizontal rectangular channels. In addition to the Rayleigh numberRa and the channel aspect ratio (width-to-height) γ, the wall heat conduction parameterK=k w t/(k f D e ) plays an important role in heat transfer. A numerical method of solution utilizing the vorticity-velocity formulation is developed to solve the system of governing partial differential equations coupled with the boundary condition equation considering peripheral wall heat conduction. Local friction factor ratio and Nusselt number variations are shown forPr=0.7,Ra=104, 3×104, and 105, γ=0.2, 0.5, 1, 2 and 5,K=0.01, 0.1 and 1. The effect of peripheral wall heat conduction on Nusselt number is found to be significant when the value of γ is less than 1. The asymptotic solutions forz→∞ are compared with the existing numerical results and good agreement is indicated.

Zusammenfassung

Diese Arbeit zeigt eine numerische Studie über den Einfluß der Wärmeleitung an der Wandoberfläche auf die laminare Mischkonvektion in der thermischen Eintrittszone von horizontalen, rechteckigen Kanälen. Neben der RayleighzahlRa und dem Kanalverhältnis γ von Breite zu Höhe, spielt der WärmeleitungsparameterK=k w t/(k f D e ) eine wichtige Rolle im Wärmetransport. Ein numerisches Verfahren der Lösungsauswertung der Wirbel-Geschwindigkeits-Gleichung ist entwickelt worden, um bestehende Differenzial-Gleichungssysteme zu lösen, die als Randbedingung gekoppelt sind die Wärmeleitung der Wandoberfläche berücksichtigen. Das lokale Reibungsfaktorverhältnis und Nusseltzahlvariationen sind fürPr=0,7,Ra=104, 3×104 und 105 und γ=0,2, 0,5, 1, 2 und 5 undK=0,01, 0,1 und 1 aufgezeigt. Der Einfluß der Wärmeleitung an der Wandoberfläche auf die Nusseltzahl ist als sehr bedeutend angesehen worden, wenn der Wert von γ kleiner als 1 ist. Die asymptotischen Lösungen fürz → ∞ sind mit den vorhandenen numerischen Ergebnissen verglichen worden und dabei wurde eine gute Übereinstimmung festgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-sectional area of a channel

a, b :

width and height of a rectangular channel, respectively

C :

a constant, (D 2 e /μ \(\bar W\) f ) ∂P f /∂Z

D e :

equivalent hydraulic diameter, 4A/S

f :

friction factor, 2\(\bar \tau\) w /(ϱ \(\overline {w\prime }\) 2)

f 1 :

a function, −(∂p/∂z)/Pe 2

g :

gravitational acceleration

Gr :

Grashof number,g β ϑ c D 3 e /ν 2

\(\bar h\) :

average heat transfer coefficient

K :

wall heat conduction parameter,k w t/(k f D e )

k f :

thermal conductivity of fluid

k w :

thermal conductivity of channel wall material

M, N :

number of divisions inX andY directions, respectively

n :

dimensionless inward normal direction to the wall

Nu :

local Nusselt number,\(\bar h\) D e /k f

P :

pressure deviation

P f :

pressure for fully developed laminar flow before thermal entrance

p :

dimensionless quantity forP

Pe :

Peclet number,Pr Re

Pr :

Prandtl number,ν/α

Ra :

Rayleigh number,Pr Gr

Re :

Reynolds number,\(\overline {W\prime }\) D e /ν

S :

circumference of cross-section

s :

dimensionless tangential coordinate on the wall inside periphery

T :

temperature

T 0 :

uniform fluid temperature at entrance

U, V, W :

velocity components inX, Y, Z directions due to buoyancy effect

u, v, w :

dimensionless quantities forU, V, W

W f :

fully developed axial velocity before thermal entrance

w f :

dimensionless quantity forW f

W′ :

axial velocity in the thermal entrance region,W f +W

w′ :

dimensionless axial velocity,w f +Ra·w

X, Y, Z :

rectangular coordinates

x, y, z :

dimensionless rectangular coordinates

α :

thermal diffusivity

β :

coefficient of thermal expansion

γ :

aspect ratio of a rectangular channel,a/b

ϑ :

dimensionless temperature difference, (T−T 0)/ϑ c

ϑ c :

characteristic temperature,q w D e /k f

μ :

viscosity

τ :

shear stress

ν :

kinematic viscosity

ξ :

axial-direction vorticity, ∂u/∂y−∂v/∂x

ϱ :

density

c :

characteristic quantity

f :

fully developed quantity before thermal entrance

w :

value at wall

0:

condition for purely forced convection

References

  1. Shah, R. K.; London, A. L.: Laminar flow forced convection in ducts. New York: Academic Press 1978

    Google Scholar 

  2. Newell, P. H.; Bergles, A. E.: Analysis of combined free and forced convection for fully developed laminar flow in horizontal tubes. ASME J. Heat Transfer 92 (1970) 83–89

    Google Scholar 

  3. Cheng, K. C.; Hwang, G. J.: Numerical solution for combined free and forced laminar convection in horizontal rectangular channels. ASME J. Heat Transfer 91 (1969) 59–66

    Google Scholar 

  4. Hwang, G. J.; Cheng, K. C.: Boundary vorticity method for convective heat transfer with secondary flow-application to the combined free and forced laminar convection in horizontal tubes, Heat Transfer 1970. Paper No. NC3.5, Amsterdam: Elsevier 1970

    Google Scholar 

  5. Ou, J. W.; Cheng, K. C.; Lin, R. C.: Combined free and forced laminar convection in inclined rectangular channel. Int. J. Heat Mass Transfer 19 (1976) 277–283

    Google Scholar 

  6. Cheng, K. C.; Hong, S. W.; Hwang, G. J.: Buoyancy effect on laminar heat transfer in the thermal entrance region of rectangular channels with uniform wall heat flux for large Prandtl number fluids. Int. J. Heat Mass Transfer 17 (1972) 1819–1836

    Google Scholar 

  7. Hong, S. W.; Morcos, S. M.; Bergles, A. E.: Analytical and experimental results for combined forced and free laminar convection in horizontal tubes. Proc. of the Fifth Int. Heat Transfer Conference 3 (1974) 154–158

    Google Scholar 

  8. Cheng, K. C.; Ou, J. W.: Free convection effects on Graetz problem for large Prandtl number fluids in horizontal tubes with uniform wall heat flux. Proc. of Fifth Int. Heat Transfer Conference 3 (1974) 159–163

    Google Scholar 

  9. Abou-Ellail, M. M. M.; Morcos, S. M.: Buoyancy effects in the entrance region of horizontal rectangular channels. J. Heat Transfer 104 (1983) 152–159

    Google Scholar 

  10. Inropera, F. P.; Schutt, J. A.: Numerical simulation of laminar mixed convection in the thermal entrance region of horizontal rectangular ducts. Numerical Heat Transfer 8 (1985) 707–729

    Google Scholar 

  11. Chou, F. C.; Hwang, G. J.: Vorticity-velocity method for Graetz problem with the effect of natural convection in a horizontal rectangular channel with uniform wall heat flux. J. Heat Transfer 109 (1987) 704–710

    Google Scholar 

  12. Ou, J. W.; Cheng, K. C.; Lin, R. C.: Natural convection effect on Graetz problem in horizontal channels with uniform wall temperature for large Pr. Int. J. Heat Transfer 17 (1974) 835–843

    Google Scholar 

  13. Hiber, C. A.; Sreenivasan, S. K.: Natural convection effects on Graetz problem in horizontal isothermal tubes. Int. J. Heat Mass Transfer 17 (1974) 1337–1348

    Google Scholar 

  14. Ou, J. W.; Cheng, K. C.: Natural convection on Graetz problem in horizontal isothermal tubes. Int. J. Heat Transfer 104 (1982) 152–159

    Google Scholar 

  15. Hishida, M.; Nagano, Y.; Montesclaros M. S.: Combined forced and free convection in the entrance region of an isothermally heated horizontal pipe. J. Heat Transfer 104 (1982) 152–159

    Google Scholar 

  16. Chu, S. C.; Bankoff, S. G.: Heat transfer to slug flow with finite wall thickness. Appl. Sci. Res. Section A 14 (1965) 379–395

    Google Scholar 

  17. Povarnitsyn, M. S.; Yurlova, E. V.: Calculation of the temperature field in a plane channel with nonuniform heating of thermally conducting wall. J. Eng. Physics 10 (1966) 82–85

    Google Scholar 

  18. Aleksashenko, V. A.: Conjugate stationary problem of heat transfer with a moving fluid in a semi-infinite tube allowing for viscous dissipation. J. Engineering Physics 14 (1968) 55–58

    Google Scholar 

  19. Luikov, A. V.; Alekasashenko, V. A.; Alekasashenko, A. A.: Analytical method of solution of conjugate problems in convective heat transfer. Int. J. Heat Transfer 14 (1971) 1047–1056

    Google Scholar 

  20. Davis, E. J.; Gill, W. N.: The effects of axial conduction in the wall on heat transfer with laminar flow. Int. J. Heat Mass Transfer 13 (1970) 459–470

    Google Scholar 

  21. Davis, E. J.; Copper, T. J.: Thermal entrance effects in stratified gas-liquid flow: experimental investigation. Chem. Eng. Sci. 24 (1969) 509–520

    Google Scholar 

  22. Mori, S.; Sakakibara, M.; Tanimoto, A.: Steady heat transfer to laminar flow in circular tube with conduction in the tube wall Heat Transfer, Japan. Res. 3 (1974) 37–46

    Google Scholar 

  23. Mori, S.; Shinke, T.; Sakakibara, M.; Tanimoto, A.: Steady heat transfer to laminar flow between parallel plates with conduction in wall. Heat Transfer, Japan. Res. 5 (1976) 17–25

    Google Scholar 

  24. Shah, R. K.; London, A. L.: Thermal boundary conditions and some solutions for laminar duct flow forced convection. J. Heat Transfer 96 (1974) 159–165

    Google Scholar 

  25. Faghri, M.; Sparrow, E. M.: Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer. J. Heat Transfer 102 (1980) 58–63

    Google Scholar 

  26. Campo, A.; Rangel, R.: Lumped-system analysis for the simultaneous wall and fluid axial conduction in laminar pipe-flow. Heat Transfer, Physico Chemical Hydrodynamics 4 (1983) 163–173

    Google Scholar 

  27. Barozzi, G. S.; Pagliarini, G.: A method to solve conjugate heat transfer problem: the case of fully developed laminar flow in a pipe. J. Heat Transfer 107 (1985) 77–83

    Google Scholar 

  28. Hwang, G. J.; Chou, F. C.: Effect of wall conduction on combined free and forced laminar convection in horizontal rectangular channels. J. Heat Transfer 109 (1987) 936–942

    Google Scholar 

  29. Incropera, F. P.; Knox, A. L.; Schutt, J. A.: Onset of thermally driven secondary flow in horizontal rectangular ducts. Proc. 8th Int. Heat Transfer Conf., San Francisco (1986) 1395–1398

  30. Mahaney, H. V.; Incropera, F. P.; Ramadhyani, S.: Development of laminar mixed convection flow in a horizontal rectangular duct with uniform bottom heating. Numerical Heat Transfer 12 (1987) 137–155

    Google Scholar 

  31. Patankar, S. V.; Spalding, D. B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15 (1972) 1787–1806

    Google Scholar 

  32. Ramakrishna, K.; Rubin, S. G.; Khosla, P. K.: Laminar natural convection along vertical square ducts. Numerical Heat Transfer 5 (1982) 59–79

    Google Scholar 

  33. Karki, K. C.; Patankar, S. V.: Cooling of a vertical shrouded fin array by natural convection: a numerical study. J. Heat Transfer 109 (1987) 671–676

    Google Scholar 

  34. Morcos, S. M.; Bergles, A. E.: Experimental investigation of combined free and forced laminar convection in horizontal tubes. J. Heat Transfer 97 (1975) 212–219

    Google Scholar 

  35. Chou, F. C.; Hwang, G. J.: Combined free and forced laminar convection in horizontal rectangular channels for highRe Ra. Canadian J. Chemical Engineering 62 (1984) 830–836

    Google Scholar 

  36. Chou, F. C.; Hwang, G. J.: Buoyancy effect on the laminar forced convection in the thermal entrance region of horizontal rectangular channels. Proc. of the 1988 National Heat Transfer Conference, Houston, Texas, 1988

Download references

Author information

Authors and Affiliations

Authors

Additional information

Superscript

average value

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, F.C., Lien, W.Y. Effect of wall heat conduction on laminar mixed convection in the thermal entrance region of horizontal rectangular channels. Wärme - Und Stoffübertragung 26, 121–127 (1991). https://doi.org/10.1007/BF01590110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01590110

Keywords

Navigation