Skip to main content
Log in

The corpus callosum in communicating and noncommunicating hydrocephalus

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

To investigate morphological changes in the corpus callosum in hydrocephalus and to correlate them with clinical findings we studied sagittal T2*-weighted cine MR images of 163 patients with hydrocephalus. The height, length and cross-sectional area of the corpus callosum were measured and related to the type of cerebrospinal fluid flow anomaly and to clinical features, especially dementia. With expansion of the lateral ventricles the corpus callosum showed mainly elevation of its body and, to a lesser degree, increase in length. Upward bowing was more pronounced in noncommunicating than in communicating hydrocephalus. Dorsal impingement on the corpus callosum by the free edge of the falx correlated with the height of the corpus callosum. Cross-sectional area did not correlate with either height, length or impingement; it was, however, the strongest anatomical discriminator between demented and nondemented patients. The area of the corpus callosum was significantly smaller in patients with white matter disease. Our findings suggest that, due to its plasticity, the corpus callosum can to some degree resist distortion in hydrocephalus. Dementia, although statistically related to atrophy of the corpus callosum, is possibly more directly related to white matter disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgy BA, Hesselink JR, Jernigan TL (1993) MR imaging of the corpus callosum. AJR 160: 949–955

    Google Scholar 

  2. Moody DM, Bell MA, Challa VR (1988) The corpus callosum, a unique white-matter tract: anatomic features that may explain sparing in Binswanger disease and resistance to flow of fluid masses. AJNR 9: 1051–1059

    Google Scholar 

  3. Naidich TP, Daniels DL, Haughton VM, Williams A, Pojunas K, Palacios E (1987) Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. I. Surface features and coronal sections. Radiology 162: 747–754

    Google Scholar 

  4. Naidich TP, Daniels DL, Haughton VM, Pech P, Williams A, Pojunas K, Palacios E (1987) Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. II. Sagittal sections. Radiology 162: 755–761

    Google Scholar 

  5. Nolte J (1988) The human brain. An introduction to its functional anatomy. Mosby, St. Louis, pp 50, 358–359

    Google Scholar 

  6. Peterson HO, Kieffer SA (1972) Introduction to neuroradiology. Harper & Row, Hagerstown, pp 121, 157–163

    Google Scholar 

  7. El Gammal TE, Allen MB, Brooks BS, Mark EK (1987) MR evaluation of hydrocephalus. AJNR 8: 591–597

    Google Scholar 

  8. Jinkins JR (1991) Clinical manifestation of hydrocephalus caused by impingement of the corpus callosum on the falx: an MR study in 40 patients. AJNR 12: 331–340

    Google Scholar 

  9. Jinkins JR (1991) The MR equivalents of cerebral hemispheric disconnection: a telencephalic commissuropathy. Comput Med Imaging Graph 15: 323–331

    Google Scholar 

  10. McLeod NA, Williams JP, Machen B, Lum GB (1987) Normal and abnormal morphology of the corpus callosum. Neurology 37: 1240–1242

    Google Scholar 

  11. Bradley WG (1992) Magnetic resonance imaging in the evaluation of cerebrospinal fluid flow abnormalities. Magn Reson Q 8: 169–196

    Google Scholar 

  12. Bradley WG, Whittemore AR, Kortman KE, Watanabe AS, Homyak M, Teresi LM, Davis SJ (1991) Cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178: 459–466

    Google Scholar 

  13. Kunz U, Heintz P, Ehrenheim C, Stolke D, Dietz H, Hundeshagen H (1989) MRI as the primary diagnostic instrument in normal pressure hydrocephalus. Psychiatry Res 29: 287–288

    Google Scholar 

  14. Zimmerman RD, Fleming CA, Lee BCP, Saint-Louis LA, Deck MDF (1986) Periventricular hyperintensity as seen by magnetic resonance: prevalence and significance. AJNR 7: 13–20

    Google Scholar 

  15. Lang J, Ederer M (1980) Über Form und Größe des Corpus callosum und das Septum pellucidum. Gegenbaurs Morphol Jahrb 126: 949–958

    Google Scholar 

  16. Laissy JP, Patrux B, Duchateau C, Hannequin D, Hugonet P, Ait-Yahia H, Thiebot J (1993) Midsagittal MR measurements of the corpus callosum in healthy subjects and diseased patients: a prospective survey. AJNR 14: 145–154

    Google Scholar 

  17. Dieteman JL, Beigelman C, Rumbach L, Vogue M, Tajahmady T, Faubert C, Jeung MY, Wackenheim A (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30: 478–480

    Google Scholar 

  18. Huber SJ, Bornstein RA, Rammohan KW, Christy JA, Chakeres DW, McGee RB (1992) Magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. J Neuropsychiatr 4: 152–158

    Google Scholar 

  19. Huber SJ, Paulson GW, Shuttleworth EC, Chakeres D, Clapp LE, Pakalnis A, Weiss K, Rammohan K (1987) Magnetic resonance imaging correlates of dementia in multiple sclerosis. Arch Neurol 44: 732–736

    Google Scholar 

  20. Pelletier J, Habib M, Lyon-Caen O, Salomon G, Poncet M, Khalil R (1993) Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol 50: 1077–1082

    Google Scholar 

  21. Weihe W, Loew M, Schulze-Siedschlag J, Horstmann A, Welter FL, Mariß G (1989) Multiple Sklerose: Balkenatrophie und Psychosyndrom. Nervenarzt 60: 414–419

    Google Scholar 

  22. Schlote W (1991) HIV-Enzephalopathie. Verh Dtsch Ges Pathol 75: 51–60

    Google Scholar 

  23. Tanaka Y, Tanaka O, Mizuno Y, Mitsuo Y (1989) A radiologic study of dynamic process in lacunar dementia. Stroke 20: 1488–1493

    Google Scholar 

  24. Yamanouchi H, Sugiura S, Shimada H (1990) Loss of nerve fibres in the corpus callosum of progressive subcortical vascular encephalopathy. J Neurol 237: 39–41

    Google Scholar 

  25. Ikeda M, Tsukagoshi H (1990) Encephalopathy due to toluene sniffing. Report of a case with magnetic resonance imaging. Eur Neurol 30: 347–349

    Google Scholar 

  26. Iwabuchi K, Yagishita S, Amano M, Yokoi S, Honda H, Tanabe T, Kinoshita J, Kosaka K (1990) An autopsy case of complicated form of spastic paraplegia with amyotrophy, mental deficiency, sensory impairment, and parkinsonism. No To Shinkei 42: 1075–1083

    Google Scholar 

  27. George AE (1991) Chronic communicating hydrocephalus and periventricular white matter disease: a debate with regard to cause and effect. AJNR 12: 42–44

    Google Scholar 

  28. Jack CR, Mokri B, Laws ER, Houser OW, Baker HL, Petersen RC (1987) MR findings in normal-pressure hydrocephalus: significance and comparison with other forms of dementia. J Comput Assist Tomogr 11: 923–931

    Google Scholar 

  29. Benes V (1982) Sequelae of transcallosal surgery. Child's Brain 9: 69–72

    Google Scholar 

  30. Viallet F, Massion J, Massarino R, Khalil R (1992) Coordination between posture and movement in a bimanual lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 88: 674–684

    Google Scholar 

  31. Baron R, Heuser K, Marioth G (1989) Marchiafava-Bignami disease with recovery diagnosed by CT and MRI: demyelination affects several CNS structures. J Neurol 236: 364–366

    Google Scholar 

  32. Bracard S, Claude D, Vespignani H, Almeras M, Carsin M, Lambert H, Picard L (1986) Scanographie et IRM de la maladie de Marchiafava-Bignami. J Neuroradiol 13: 87–94

    Google Scholar 

  33. Chang KH, Cha SH, Han MH, Park SH, Nah DL, Hong JH (1992) Marchiafava-Bignami disease: serial changes in corpus callosum on MRI. Neuroradiology 34: 480–482

    Google Scholar 

  34. Yoshii F, Shinohara Y, Duara R (1990) Cerebral white matter bundle alterations in patients with dementia of Alzheimer type and patients with multi-infarct dementia-magnetic resonance imaging study. Rino Shink 30: 110–112

    Google Scholar 

  35. Yamanouchi H, Sugiura S, Shimada H (1989) Decrease of nerve fibres in the anterior corpus callosum of senile dementia of Alzheimer type (letter). J Neurol 236: 491–492

    Google Scholar 

  36. Delangre T, Hannequin D, Clavier E, Denis P, Mihout B, Samson M (1986) Maladie de marchiafava-Bignami d'evolution favorable. Rev Neurol 142: 933–936

    Google Scholar 

  37. Namba Y, Bando M, Takeda K, Iwata M, Mannen T (1991) Marchiafava-Bignami disease with symptoms of the motor impersistence and unilateral hemispatial neglect. Rinso Shink 31: 632–635

    Google Scholar 

  38. Rosa A, Demiati M, Cartz L, Mizon JP (1991) Marchiafava-Bignami disease, syndrome of interhemispheric disconnection and right-handed agraphia in a left-hander. Arch Neurol 48: 986–988

    Google Scholar 

  39. Canaple S, Rosa A, Mizon JP (1992) Maladie de Marchiafava-Bignami: disconnexion interhémispherique, evolution favorable. Aspect neuroradiologique. Rev Neurol 148: 638–640

    Google Scholar 

  40. Fletcher JM, Bohan TP, Brandt ME, Brookshire BL, Beaver SR, Francis DJ, Davidson KC, Thompson NM, Miner ME (1992) Cerebral white matter and cognition in hydrocephalic children. Arch Neurol 49: 818–824

    Google Scholar 

  41. Gadsdon DR, Variend S, Emery JL (1978) The effect of hydrocephalus upon the myelination of the corpus callosum. Z Kinderchir 25: 311–318

    Google Scholar 

  42. Castro-Caldas A, Poppe P, Antunes JL, Campos J (1989) Partial section of the corpus callosum: focal signs and their recovery. Neurosurgery 25: 442–447

    Google Scholar 

  43. Rudge P, Warrington EK (1991) Selective impariment of memory and visual perception in splenial tumours. Brain 114: 349–360

    Google Scholar 

  44. Rubin RC, Hochwaldt GM, Tiell M, Mizutani H, Ghatak N (1976) Hydrocephalus. I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5: 109–114

    Google Scholar 

  45. Kameyama M (1973) Vascular lesions in the frontal association field and dementia. Clin Psychiatr 15: 357–366

    Google Scholar 

  46. Roessmann U, Friede RL (1968) Surface lesions of corpus callosum. Acta Neuropathol 10: 151–158

    Google Scholar 

  47. Sidtis JJ, Volpe BT, Holtzman JD, Wilson DH, Gazzaniga MS (1981) Cognitive interaction after staged callosal section. Evidence for transfer of semantic activation. Science 212: 344–346

    Google Scholar 

  48. Warrington EK, Weiskrantz L (1982) Amnesia: a disconnection syndrome? Neuropsychologia 20: 233–248

    Google Scholar 

  49. Clark RC, Milhorat TH (1976) Experimental hydrocephalus, part 3. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 32: 400–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. M. Nadjmi on the occasion of his sixty-fifth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, E., Becker, T., Jackel, M. et al. The corpus callosum in communicating and noncommunicating hydrocephalus. Neuroradiology 37, 212–218 (1995). https://doi.org/10.1007/BF01578260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578260

Key words

Navigation