Skip to main content
Log in

Inverse relationship between colonic (Na+ + K+)-ATPase activity and degree of mucosal inflammation in inflammatory bowel disease

  • Original Articles
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

In inflammatory bowel disease (IBD), mucosal damage and loss of colonic function are regarded as major consequences of inflammation. Decreased colonic (Na+ + K+)-ATPase activities with diminished reabsorption of sodium and water have been found in active stages of ulcerative colitis. In this study, we report an inverse relationship between colonic (Na+ + K+)-ATPase activity and the degree of mucosal inflammation in 19 patients with IBD of mild to moderate disease activity. Various macroscopic and histologic types of mucosal lesions were differently associated with the (Na+ + K+)-ATPase activities. 5′-nucleotidase activity was not associated with the degree of mucosal inflammation or the kind of macroscopic or histologic lesions. Our findings support the view that, in contrast to 5′-nucleotidase, (Na+ + K+)-ATPase activity may better reflect the severity of mucosal damage and the degree of inflammation in IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hermanowicz A, Nawarska Z: Chemotaxis and random migration of polymorphonuclear leukocytes in ulcerative colitis examined by the agarose method. Scand J Gastroenterol 16:961–966, 1981

    PubMed  Google Scholar 

  2. Morson BC: Pathology in ulcerative colitis.In Inflammatory Bowel Disease. JP Kirsner, RG Shorter (eds). Philadelphia, Lea & Febiger, 1980, pp 281–285

    Google Scholar 

  3. Stein DT, Gray GM, Gregory PB, Anderson M, Goodwin DA, MacDougall IR: Location and activity of ulcerative and Crohn's colitis by indium 111 leukocyte scan. A prospective comparison study. Gastroenterology 84:388–393, 1983

    PubMed  Google Scholar 

  4. Saverymuttu SH, Peters AM, Lavender JP, Chadwick VS, Hodgson HJF:In vivo assessment of granulocyte migration to diseased bowel in Crohn's disease. Gut 26:378–383, 1985

    PubMed  Google Scholar 

  5. Rachmilewitz D, Treves AJ, Ligumsky M, Sharon P, Zifroni A, Karmeli F: Possible role of prostanoids as mediators in the pathogenesis of inflammatory bowel disease.In Developments in Gastroenterology, Vol 3, Inflammatory Bowel Diseases. D. Rachmilewitz (ed). Martinus Nijholt Publ, The Hague, 1982, pp 161–173

    Google Scholar 

  6. Head LH, Heaton JW, Kivel RW: Absorption of water and electrolytes in Crohn's disease of the colon. Gastroenterology 56:571–579, 1969

    PubMed  Google Scholar 

  7. Tripp JH, Müller DP, Harries JT: Mucosal (Na+ + K+)-ATPase and adenylate cyclase activities in children with toddler diarrhea and the postenteritis syndrome. Pediatr Res 14:1382–1386, 1980

    PubMed  Google Scholar 

  8. McChung HJ, Butler DG, Kerzner B, Gall DG, Hamilton JR: Transmissible gastroenteritis: Mucosal ion transport in active viral enteritis. Gastroenterology 70:1091–1094, 1976

    PubMed  Google Scholar 

  9. Wanitschke R, George KJ: Intestinale Sekretion bei entzündlichen Darmerkrankungen.In Entzündliche Darmerkrankungen. R Ottenjann, H Fahrländer (eds). Springer Verlag, Berlin, 1983, pp 48–61

    Google Scholar 

  10. Gooptu D, Truelove SC, Warner GT: Absorption of electrolytes from the colon in cases of ulcerative colitis and in control subjects. Gut 10:555–561, 1964

    Google Scholar 

  11. Harris J, Shields R: Absorption and secretion of water and electrolytes by the intact human colon in diffuse untreated proctocolitis. Gut 11:27–33, 1970

    PubMed  Google Scholar 

  12. Frühmorgen P, Laudage G, Matek W: Colitis ulcerosa und Morbus Crohn.In Entzündliche Erkrankungen des Dickdarmes. R Ottenjann, H Fahrländer (eds). Springer Verlag, Berlin, 1983, pp 103–107

    Google Scholar 

  13. Byrd JC, Fearney FJ, Kim YS: Rat intestinal nucleotide sugar pyrophosphatase. Localization, partial purification, and substrate specificity. J Biol Chem 260:7474–7480, 1985

    PubMed  Google Scholar 

  14. Frickle T, Curhoys NP: Specific labelling of the hydrophobic domain of rat renal α-glutamyl transferase.In Brush Border Membranes, Ciba Foundation Symposium 95, Pitman, London, 1983, pp 73–91

    Google Scholar 

  15. Truelove SC, Witts LJ: Cortisone in ulcerative colitis. Br Med J 2:1041–1048, 1955

    Google Scholar 

  16. Best WR, Becktel JM, Singleton JW, Kern F: Development of a Crohn's disease activity index. National cooperative Crohn's disease study. Gastroenterology 70:439–444, 1976

    PubMed  Google Scholar 

  17. Binder V: A comparison between clinical state, macroscopic and microscopic appearances of rectal mucosa and cytologic picture of mucosal exudate in ulcerative colitis. Scand J Gastroenterol 5:627–632, 1970

    PubMed  Google Scholar 

  18. Schoner W, Ilberg C, v. Kramer R, Seubert W: On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of Na+ + K+-activated ATPase from ox brain. Eur J Biochem 1: 334–343, 1976

    Google Scholar 

  19. Solyom A, Trams EG: Enzyme markers in characterization of isolated membranes. Enzyme 13:329–372, 1972

    PubMed  Google Scholar 

  20. Chen PS, Toribara TY, Warner H: Microdetermination of phosphorus. Anal Chem 28:1756–1758, 1956

    Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall FJ: Protein measurements with the Folin phenol reagent. J Biol Chem 93:265–275, 1951

    Google Scholar 

  22. Hollander M, Wolfe DH: Nonparametric Statistical Methods. Wiley, New York, 1973

    Google Scholar 

  23. Rachmilewitz D, Karmeli F, Selinger Z: Increased colonic adenylate cyclase activity in active ulcerative colitis. Gastroenterology 85:12–16, 1983

    PubMed  Google Scholar 

  24. Frizell RA, Halm DR, Krasny EJ, Jr: Relationship between chloride and potassium secretion across large intestine.In Mechanisms of Intestinal Electrolyte Transport and Regulation by Calcium. Alan R. Liss, New York, pp 35–46, 1984

    Google Scholar 

  25. Sharon P, Ligumsky M, Rachmilewitz D, Zor U: Role of prostaglandins in ulcerative colitis. Enhanced productions during active disease and inhibition by sulfasalazine. Gastroenterology 75:638–690, 1978

    PubMed  Google Scholar 

  26. Sharon P, Stenson WF: Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 86:453–460, 1984

    PubMed  Google Scholar 

  27. Boughton-Smith NK, Hawkey CJ, Whittle BJR: Biosynthesis of lipoxygenase and cyclooxygenase products from [14C]-arachidonic acid by human colonic mucosa. Gut 24:1176–1183, 1983

    PubMed  Google Scholar 

  28. Roediger WEW: The colonic epithelium in ulcerative colitis: An energy deficiency disease? Lancet 2:712–715, 1980

    PubMed  Google Scholar 

  29. Rowling PJE, Sepulveda FV: The distribution of (Na+ + K+)-ATPase along the villus crypt-axis in the rabbit small intestine. Biochim Biophys Acta 771:35–41, 1984

    PubMed  Google Scholar 

  30. Stirling CE: Radioautographic localisation of sodium pump sites in rabbit intestine. J Cell Biol 53:704–714, 1972

    PubMed  Google Scholar 

  31. Erdmann E: Influence of cardiac glycosides on their receptor. Handb Exp Pharmacol 56:337–339, 1981

    Google Scholar 

  32. Allgayer H, Brown L, Kruis W, Erdmann E, Paumgartner G: Inhibition of human colonic (Na+ + K+)-ATPase by arachidonic and linoleic acid. Naunyn-Schmiedeberg's Arch Pharmacol 332:398–402, 1986

    Google Scholar 

  33. Sharon P, Karmeli F, Rachmilewitz D: Effect of prostanoids on human intestinal Na-K-ATPase activity. Isr J Med Sci 20:677–680, 1984

    PubMed  Google Scholar 

  34. Rampton DS, Sladon GE, Youlten LJ: Rectal mucosal prostaglandin E2 release and its relation to disease activity, electrical potential difference and treatment in ulcerative colitis. Gut 21:591–596, 1980

    PubMed  Google Scholar 

  35. Rampton DS, Sladon GE: The effect of sulphasalazine withdrawal on rectal mucosal function and prostaglandin E2 release in inactive ulcerative colitis. Scand J Gastroenterol 16:157–159, 1981

    PubMed  Google Scholar 

  36. O'Morain C, Smethurst P, Levi AJ, Peters TJ: Organelle pathology in ulcerative colitis and Crohn's colitis with special reference to the lysosomal alterations. Gut 25:455–459, 1984

    PubMed  Google Scholar 

  37. Allgayer H, Kruis W, Paumgartner G: AzetylatorstatusunabhängigeN-acetyltransferaseaktivität im Kolon bei Patienten mit Colitis ulcerosa unter Sulfasalazin Dauertherapie. Z Gastroenterol 22:456, 1984 (abstract)

    Google Scholar 

  38. Vatn MH, Elgjo K, Norheim A, Bergan H: Measurements of enzyme activity in colonic biopsies: A test for premalignancy in ulcerative colitis? Scand J Gastroenterol 19:889–892, 1984

    PubMed  Google Scholar 

  39. Misiewicz JJ, Lennard Jones JE, Connell AM, Baron JH, Avery Jones F: Controlled trial of sulfasalazine in maintenance treatment for ulcerative colitis. Lancet 1:185–188, 1965

    Google Scholar 

  40. Maier K, Fischer C, Klotz U, Heinkel K: 5-Aminosalicylsäure bei Colitis ulcerosa und Morbus Crohn. Dtsch Med Wochenschr 107:1131–1134, 1982

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allgayer, H., Kruis, W., Paumgartner, G. et al. Inverse relationship between colonic (Na+ + K+)-ATPase activity and degree of mucosal inflammation in inflammatory bowel disease. Digest Dis Sci 33, 417–422 (1988). https://doi.org/10.1007/BF01536025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01536025

Key words

Navigation