Skip to main content
Log in

Parasexual analysis of human pepsinogen molecular heterogeneity

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Pepsinogens (PGA) are the inactive precursors of pepsin, the major acid protease found in the stomach. Highly polymorphic variation of these proteins has been demonstrated in several populations, and comparison of the DNA restriction fragment patterns obtained from informative pepsinogen phenotypes suggest that the polymorphism results from chromosomal haplotypes containing variable numbers of pepsinogen genes. In order to isolate the three most common PGA haplotypes (A, B, and C) and to unambiguously demonstrate their relationship to the observed protein heterogeneity, we constructed mouse × human somatic cell hybrids from individuals heterozygous for PGA and INS (insulin). Here, we describe analysis of hybrid cell lines that segregated human chromosomes containing the PGAgenes and thereby provided for the parasexual discrimination of the different haplotypes on chromosome 11 determining the corresponding heterozygous phenotypes. These studies demonstrate that the A, B, and C haplotypes contain three, two, and one PGAgenes, respectively. This unusual polymorphism of genomic DNA encoding very similar proteins probably reflects recent evolution by gene duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Taggart, R.T., Karn, R.C., Merritt, A.D., Yu, P.L., and Conneally, P.M. (1978).Hum. Genet. 52:227–238.

    Google Scholar 

  2. Korsnes, L., and Gedde-Dahl, T. (1980).Ann. Hum. Genet. 43:199–212.

    PubMed  Google Scholar 

  3. Frants, R.R., Pronk, J.C., Pals, G., et al. (1984).Hum. Genet. 65:385–390.

    PubMed  Google Scholar 

  4. Samloff, I.M., and Townes, P.L. (1970).Science 168:144–145.

    PubMed  Google Scholar 

  5. Samloff, I.M., Liebman, W.M., Glober, G.A., Moore, J.O., and Indra, D. (1973).Am. J. Hum. Genet. 25:178–180.

    PubMed  Google Scholar 

  6. Taggart, R.T., Mohandas, T.K., Shows, T.B., and Bell, G.I. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:6240–6244.

    PubMed  Google Scholar 

  7. Nakai, H., Byers, M.G., Shows, T.B., and Taggart, R.T. (1987).Cytogenet. Cell Genet. (in press).

  8. Taggart, R.T., Samloff, I.M., Raffel, L.J., Graham, A., et al. (1986).Am. J. Hum. Genet. 38:848–854.

    PubMed  Google Scholar 

  9. Littlefield, J. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  10. Creagan, R.P., and Ruddle, F.H. (1977). InChromosomes in Biology and Medicine, J.J. Yunis, (ed.). (Academic Press, New York), pp. 89–142.

    Google Scholar 

  11. Baker, R.M., Brunette, D.M., Mankovitz, R., et al. (1974).Cell 1:9–21.

    Google Scholar 

  12. Kucherlapati, R.S., Baker, R.M., and Ruddle, F.H. (1975).Cytogenet. Cell Genet. 14:192–193.

    Google Scholar 

  13. Ruddle, F.H. (1973).Nature 242:165–169.

    PubMed  Google Scholar 

  14. Handmaker, S.D. (1973).Annu. Rev. Microbiol. 27:189–204.

    PubMed  Google Scholar 

  15. Wang, H.S., Niewczas, V., Nazareth, H.R.S., and Hamerton, J.L. (1979).Cytogenet. Cell Genet. 24:233–244.

    PubMed  Google Scholar 

  16. Sogowa, K., Fujii-Kuriyama, Y., Mizukami, Y., Ichihara, Y., and Takahashi, K. (1983).J. Biol. Chem. 258:5306–5311.

    PubMed  Google Scholar 

  17. Hayano, T., Sogowa, K., Ichihara, Y., Fujii-Kuriyama, Y., and Takahashi, K. (1986).Biochem. Biophys. Res. Commun. 138:289–296.

    PubMed  Google Scholar 

  18. Taggart, R.T. & Samloff, I.M..Gastroenterology 92:143–150 (1987).

    PubMed  Google Scholar 

  19. White, R., Woodward, S., Leppert, M., O'Connell, P., Hoff, M., et al. (1985).Nature 18:382–384.

    Google Scholar 

  20. Knowlton, R.G., Cohen-Hguenauer, O., Van Cong, N., et al. (1985).Nature 318:380–382.

    PubMed  Google Scholar 

  21. Gusella, J.F., Tanzi, R.E., Anderson, M.A., Hobbs, W., et al. (1984).Nature 225:1320–1326.

    Google Scholar 

  22. Gusella, J.F. (1986).J. Clin. Invest. 77:1723–1726.

    PubMed  Google Scholar 

  23. de Martinville, B., Kunkel, L.M., Bruns, G., Morlé, F., et al. (1985).Am. J. Hum. Genet. 37:235–249.

    PubMed  Google Scholar 

  24. Baehner, R.L., Kunkel, L.M., Monaco, A.P., et al. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:3398–3401.

    PubMed  Google Scholar 

  25. Monaco, A.P., Bertelson, C.J., Middlesworth, W., et al. (1985).Nature 316:842–845.

    PubMed  Google Scholar 

  26. Kunkel, L.M., Monaco, A.P., Middleworth, W., Ochs, H.D., and Latt, S.A. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:4778–4482.

    PubMed  Google Scholar 

  27. Nathans, J., Piantanida, T.P., Eddy, R.L., Shows, T.B., and Hogness, D.S. (1986).Science 232:203–210.

    PubMed  Google Scholar 

  28. Nathans, J., Thomas, D., and Hogness, D.S. (1986).Science 232:193–202.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taggart, R.T., Mohandas, T.K. & Bell, G.I. Parasexual analysis of human pepsinogen molecular heterogeneity. Somat Cell Mol Genet 13, 167–172 (1987). https://doi.org/10.1007/BF01534696

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534696

Keywords

Navigation