Skip to main content
Log in

Solution of the problem of energy coupling in terms of chemiosmotic theory

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Summary

The present state of the chemiosmotic hypothesis of oxidative phosphorylation is considered. It is pointed out that the available data testify to the validity of the following postulates of this hypothesis:

  1. (1)

    Energization of coupling membranes results in formation of a transmembrane electric potential and/or a pH difference whose values prove to be of the same order of magnitude as standard free energy of ATP hydrolysis.

  2. (2)

    The redox chain can generate a membrane potential independently of whether or not high-energy intermediates are formed.

  3. (3)

    ATPase can generate a membrane potential independently of whether or not mechanisms of electron transfer via coupling sites are operative.

  4. (4)

    Energy accumulated in the form of transmembrane electric and osmotic gradients can be utilized for ATP synthesis (“ion transfer phosphorylation”).

The observations summarized in these items are sufficient to conclude that electron transfer and phosphorylation can be coupled by a membrane potential, as was postulated by the chemiosmotic theory.

It is noted that a number of consequences of Mitchell's principle of energy coupling are also experimentally proved. It was shown, in particular, that

  1. (a)

    an increase in electric conductance and ion permeability, initially very low for coupling membranes, results in uncoupling of oxidative phosphorylation;

  2. (b)

    electron (hydrogen) transfer in some segment(s) of the respiratory chain is directed across the membrane;

  3. (c)

    energy-linked transhydrogenase represents reverse electron transfer via the additional (fourth) site of the redox chain energy coupling, etc.

Thus, chemiosmotic theory of oxidative phosphorylation seems to be acceptable as working hypothesis for the further study of the mechanism of oxidative phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Belitser and E. T. Tsibakova,Biokhimiya USSR,4 (1939) 516.

    Google Scholar 

  2. P. Mitchell,Nature,191 (1961) 144.

    PubMed  Google Scholar 

  3. P. Mitchell,Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Res. Ltd., Bodmin, 1966.

    Google Scholar 

  4. L. L. Grinius, A. A. Jasaitis, Yu. P. Kadziaskas, E. A. Liberman, V. P. Skulachev, V. P. Topali, L. M. Tsofina and M. A. Vladimirova,Biochim. Biophys. Acta,216 (1970) 1.

    PubMed  Google Scholar 

  5. L. E. Bakeeva, L. L. Grinius, A. A. Jasaitis, V. V. Kuliene, D. O. Levitsky, E. A. Liberman, I. I. Severina and V. P. Skulachev,Biochim. Biophys. Acta,216 (1970) 13.

    PubMed  Google Scholar 

  6. V. P. Skulachev,FEBS Letters,11 (1970) 301.

    PubMed  Google Scholar 

  7. S. Papa, F. Guerrieri, M. Lorusso and E. Quagliariello,FEBS Letters,10 (1970) 295.

    PubMed  Google Scholar 

  8. M. Montal, B. Chance and C.-P. Lee,J. Membrane Biol.,2 (1970) 201.

    Google Scholar 

  9. A. Azzi,Biochem. Biophys. Res. Commun.,37 (1969) 254.

    PubMed  Google Scholar 

  10. A. Azzi, P. Cherardini and M. Santato,J. Biol. Chem.,246 (1971) 2035.

    Google Scholar 

  11. A. Azzi, A. Tamburro, E. Gobbi and M. Santato,7th FEBS Meeting Abstracts, Varna, 1971, p. 51.

  12. J. R. Brocklehurst, R. B. Freedman, D. J. Hancock, and G. K. Radda,Biochem. J.,116 (1970) 721.

    PubMed  Google Scholar 

  13. P. I. Isaev, E. A. Liberman, V. D. Samuilov, V. P. Skulachev and L. M. Tsofina,Biochim. Biophys. Acta,216 (1970) 22.

    PubMed  Google Scholar 

  14. V. P. Skulachev,Energy Transformations in Biomembranes, Nauka Press, 1972.

  15. A. T. Jagendorf and E. Uribe,Proc. Natl. Acad. Sci. U.S.,55 (1966) 170.

    Google Scholar 

  16. R. S. Cockrell, E. J. Harris and B. C. Pressman,Nature,215 (1967) 1487.

    PubMed  Google Scholar 

  17. P. J. Garrahan and I. M. Glynn,Nature,211 (1966) 1414.

    PubMed  Google Scholar 

  18. M. Makinose,FEBS Letters,5 (1971) 269.

    Google Scholar 

  19. A. A. Jasaitis, V. V. Kuliene and V. P. Skulachev,Biochim. Biophys. Acta,234 (1971) 177.

    PubMed  Google Scholar 

  20. J. B. Jackson and A. R. Crofts,FEBS Letters,4 (1969) 185.

    PubMed  Google Scholar 

  21. J. Patrick, B. Valeur, L. Monnerie and J.-P. Changeux,J. Membrane Biol.,5 (1971) 102.

    Google Scholar 

  22. H. Haaker, I. A. Berden and K. Van Dam,Biochim. Biophys. Acta, in press.

  23. E. A. Liberman, V. P. Topali, L. M. Tsofina, A. A. Jasaitis and V. P. Skulachev,Nature 222 (1969) 1076.

    PubMed  Google Scholar 

  24. V. P. Skulachev,Current Topics in Bioenergetics,4 (1971) 127.

    Google Scholar 

  25. H. P. Ting, D. F. Wilson and B. Chance,Arch. Biochem. Biophys.,141 (1970) 141.

    PubMed  Google Scholar 

  26. E. A. Liberman and V. P. Skulachev,Biochim. Biophys. Acta,216 (1970) 30.

    PubMed  Google Scholar 

  27. W. Junge and H. T. Witt,Z. Naturforsch.,23 (1968) 244.

    Google Scholar 

  28. W. Schliephake, W. Junge and H. T. Witt,Z. Naturforsch.,23 (1968) 1571.

    Google Scholar 

  29. Ch. Wolff, H.-E. Buchwald, H. Rüppel, K. Witt and H. T. WittZ. Naturforsch. 24 (1969) 1041.

    Google Scholar 

  30. H. M. Emrich, W. Junge and H. T. Witt,Z. Naturforsch.,24 (1969) 1144.

    Google Scholar 

  31. W. Junge, B. Rumberg and H. Schröder,Eur. J. Biochem.,14 (1970) 575.

    PubMed  Google Scholar 

  32. G. D. Greville,Current Topics in Bioenergetics,3 (1969) 1.

    Google Scholar 

  33. L. L. Grinius, M. A. Il'ina, V. P. Skulachev and G. V. Tikhonova,Biochim. Biophys. Acta (submitted).

  34. E. A. Liberman and L. M. TsofinaBiofisika USSR,14 (1969) 1017.

    Google Scholar 

  35. L. L. Grinius and V. P. Skulachev,Biokhimiya USSR,36 (1971) 430.

    Google Scholar 

  36. A. E. Dontsov, L. L. Grinius, A. A. Jasaitis, I. I. Severina and V. P. Skulachev,J. Bioenergetics (in press).

  37. R. J. Van de Stadt, F. J. R. M. Nienwenhuis, K. Van Dam,Biochim. Biophys. Acta,234 (1971) 173.

    PubMed  Google Scholar 

  38. J. B. Chappell and A. R. Crofts,Biochem. J.,95 (1965) 393.

    PubMed  Google Scholar 

  39. P. Mitchell and J. Moyle,Nature 208 (1965) 1205.

    PubMed  Google Scholar 

  40. V. P. Skulachev, in:Energy Transduction in Respiration and photosynthesis, Bary, Adriatica Editrice, 1971, p. 99.

    Google Scholar 

  41. P. Hinkle and P. Mitchell,J. Bioenergetics,1 (1970) 45.

    Google Scholar 

  42. J. B. Jackson and A. R. Crofts,Eur. J. Biochem.,18 (1971) 120.

    PubMed  Google Scholar 

  43. A. A. Jasaitis, I. I. Severina, V. P. Skulachev and S. M. Smirnova,J. Bioenergetics (in press).

  44. W. J. Arion and E. Racker,J. Biol. Chem.,245 (1970) 5186.

    PubMed  Google Scholar 

  45. G. S. P. Groot, L. Kovač and G. Schatz,Proc. Natl. Acad. Sci. U.S.,68 (1971) 308.

    Google Scholar 

  46. E. C. Slater,Quarterly Reviews of Biophysics,4 (1971) 35.

    PubMed  Google Scholar 

  47. M. Klingenberg,Essays in Biochem.,6 (1970) 119.

    Google Scholar 

  48. E. Rossi and G. F. Azzone,Europ. J. Biochem.,12 (1970) 319.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P. Solution of the problem of energy coupling in terms of chemiosmotic theory. J Bioenerg Biomembr 3, 25–38 (1972). https://doi.org/10.1007/BF01515994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515994

Keywords

Navigation