Skip to main content
Log in

Transposable elements and adaptation of host bacteria

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A transposable element (TE) is a mobile sequence present in the genome of an organism. TEs can cause lethal mutations by inserting into essential, genes, promoting deletions or leaving short sequences upon excision. They therefore may be gradually eliminated from mixed populations of haploid micro-organisms such asEscherichia coli if they cannot balance this mutation load. Horizontal transmission between cells is known to occur and promote the transfer of TEs, but at rates often too low to compensate for the burden to their hosts. Therefore, alternative mechanisms should be found by these elements to earn their keep in the cells. Several theories have been suggested to explain their long-term maintenance in prokaryotic genomes, but little molecular evidence has been experimentally obtained. In this paper, the permanence of transposable elements in bacterial populations is discussed in terms of costs or benefits for the element and for the host. It is observed that, in all studies yet reported, the elements do not behave in their host as selfish DNA but as a co-operative component for the evolution of the couple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arber., W., 1982. Das bacteriumE. coli under das Lupe der Molekulargenetiker. Mannheimer Forum 81/82. Herausgegeben von Boehringer Mannheim GmbH. 81p.

  • Arber, W., 1983. Bacterial inserted sequence elements and their influence on genetic stability and evolution. Proc. Nucleic Acids Res. 29:27–31.

    Google Scholar 

  • Arber, W., 1990. Mechanisms in microbial evolution. J. Struct. Biol. 104:107–111.

    PubMed  Google Scholar 

  • Arber, W., 1991. Elements in microbial evolution. J. Mol. Evol. 33:4–12.

    PubMed  Google Scholar 

  • Arber, W., M. Hümbelin, P. Caspers, H.J. Reif, S. Iida & J. Meyer, 1980. Spontaneous mutations in theEscherichia coli prophage P1 and IS-mediated processes. Cold Spring Harbor Symp. Quant. Biol. 45:38–40.

    Google Scholar 

  • Arber, W., T. Naas & M. Blot, 1994. Genetic rearrangements in resting bacteria. FEMS Microbiol. Ecol. (in press).

  • Belfort, M., 1990. Phage T4 introns: self-splicing and mobility. Ann. Rev. Genet. 24:363–385.

    PubMed  Google Scholar 

  • Berg, C.M., D.E. Berg & E.A. Grosman, 1989. Transposable elements and the genetic engineering of bacteria. pp 879–925 in Mobile DNA, edited by D.E. Berg and M. Howe. ASM, Washington D.C.

    Google Scholar 

  • Biel, S.W. & D.L. Hartl., 1981. Beneficial effects of Tn5 are independent of transposition. Genetics 97:s11.

    PubMed  Google Scholar 

  • Biel, S.W. & D.L. Hartl, 1983. Evolution of transposons: natural selection for Tn5 inEscherichia coli K12. Genetics 103:581–592.

    PubMed  Google Scholar 

  • Blot, M., B. Hauer & G. Monnet, 1994. The Tn5-bleomycin resistance gene confers improved survival and growth advantage toEscherichia coli. Mol. Gen. Genet. 242:595–601.

    PubMed  Google Scholar 

  • Blot, M., J. Heitman & W. Arber, 1993. Tn5-mediated bleomycin resistance inEscherichia coli requires the expression, of host genes. Mol. Microbiol. 8:1017–1024.

    PubMed  Google Scholar 

  • Blot, M., J. Meyer & W. Arber, 1991. Bleomycin-resistance gene derived from the transposon Tn5 confers selective advantage toEscherichia coli K-12. Proc. Natl. Acad. Sci. USA. 88:9112–9116.

    PubMed  Google Scholar 

  • Campbell, A., 1981a. Evolutionary significance of accessory DNA elements in bacteria. Ann. Rev. Microbiol. 35:55–83.

    Google Scholar 

  • Campbell, A., 1981b. Some questions about movable elemens and their implications. Cold Spring Harbor Symp. Quant. Biol. 45:1–9.

    Google Scholar 

  • Campbell, A.M., D. Berg, D. Botstein, E. Lederberg, R. Novick, P. Starlinger & W. Szybalski, 1977. Nomenclature of transposable elements in prokaryotes. pp. 15–22 in DNA Insertion, Elements, Plasmids and Episomes, edited by A.I. Bukhari, J.A. Shapiro and S.L. Adhya. CSHL, Cold Spring Harbor.

    Google Scholar 

  • Chao, L. & S.M. McBroom, 1985. Evolution of transposable elements: an IS10 insertion increases fitness inEscherichia coli. Mol. Biol. Evol. 2:359–369.

    PubMed  Google Scholar 

  • Chao, L., C. Vargas, B.B. Spear & E.C. Cox, 1983. Transposable elements as mutator genes in evolution. Nature 303:633–635.

    PubMed  Google Scholar 

  • Ciampi, M.S., M.B. Schmid & J.R. Roth, 1982. Transposon Tn10 provides a promoter for transcription of adjacent sequences. Proc. Natl. Acad. Sci. USA 79:5016–5020.

    PubMed  Google Scholar 

  • Condit, R., 1990. The evolution of transposable elements: conditions for establishment in bacterial populations. Evolution 44:347–359.

    Google Scholar 

  • Condit, R., F. Stewart & B. Levin, 1988. The population biology of bacterial transposons: a priori conditions for maintenance as parasitic DNA. Am. Nat. 132:129–147.

    Google Scholar 

  • Datta, N., B.W. Randolph & J.L. Rosner, 1983. Detection of chemicals that stimulate Tn9 tranposition inEscherichia coli. Mol. Gen. Genet. 189:245–250.

    PubMed  Google Scholar 

  • Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603.

    PubMed  Google Scholar 

  • Edlin, G., S.W. Lee & M.M. Green, 1986. Tn10 transposition does not respond to environmental stress. Mut. Res. 175:159–164.

    Google Scholar 

  • Escoubas, J.M., M.F. Prère, O. Fayet, I. Salvignol, D. Galas, D. Zerbib & M. Chandler, 1991. Translational control of transposition activity of the bacterial insertion sequence IS1. EMBO J. 10:705–712.

    PubMed  Google Scholar 

  • Galas, D.J. & M. Chandler, 1989. Bacterial Insertion Sequences, pp. 109–162 in Mocile DNA, edited by D. Berg and M. Howe. ASM, Washington D.C.

    Google Scholar 

  • Hall, B.G., 1988. Adaptive evolution that requires multiple spontaneous mutations I. Mutations involving an insertion sequence. Genetics 120:887–897.

    PubMed  Google Scholar 

  • Hall, B.G., 1991. Is the occurrence of some spontaneous mutations directed by environmental challenges? The New Biologist 3:729–733.

    PubMed  Google Scholar 

  • Hartl, D.L., D.E. Dykhuizen, R.D. Miller, L. Green & J. De Framond, 1983. Transposable element IS50 improves growth rate ofEscherichia coli cells without transposition. Cell 35:503–510.

    PubMed  Google Scholar 

  • Inouye, M. & J.S. Inouye, 1992. Retrons and multicopy single stranded DNA. J. Bacteriol. 174:2419–2424.

    PubMed  Google Scholar 

  • Jilk, R.A., J.C. Makris, L. Borchardt & W.S. Reznikoff, 1993. Implications of Tn5-Associated adjacent deletions. J. Bacteriol. 175:1264–1271.

    PubMed  Google Scholar 

  • Kolter, R., D.A. Siegele & A. Tormo, 1993. The stationary phase of the bacterial cycle. Ann. Rev. Microbiol. 47:855–74.

    Google Scholar 

  • Kurlandzka, A., R.F. Rosenzweig & A. Adams, 1991. Identification of adaptive changes in an evolving population ofEscherichia coli: the role of changes with regulatory and highly pleiotropic effects. Mol. Biol. Evol. 8:261–281.

    PubMed  Google Scholar 

  • Lawrence, J.G., H. Ochman & D.L. Hartl, 1992. The evolution of insertion sequences within enteric bacteria. Genetics 131:9–20.

    PubMed  Google Scholar 

  • Médigue, C., T. Roxel, P. Vigier, A. Hénaut & A. Danchin, 1991. Evidence for horizontal gene transfer inEscherichia coli speciation. J. Mol. Biol. 222:851–856.

    PubMed  Google Scholar 

  • Mikkola, R. & C.G. Kurland, 1991. Is there a unique ribosome phenotype for naturally occurringEscherichia coli? Biochimie 73:1061–1066.

    PubMed  Google Scholar 

  • Mikkola, R. & C.G. Kurland, 1992. Selection of laboratory wild-type phenotype from natural isolates ofEscherichia coli in chemostats. Mol. Biol. Evol. 9:394–402.

    PubMed  Google Scholar 

  • Modi, R.I., L.H. Castilla, S. Puskas-Rozsa, R.B. Helling & J. Adams, 1992. Genetic changes accompanying increased fitness in evolving populations ofEscherichia coli. Genetics 130:241–249.

    PubMed  Google Scholar 

  • Naas, T., M. Blot, W.M. Fitch & W. Arber, 1994. Insertion sequence-related genetic rearrangements in restingEscherichia coli K-12. Genetics 136:721–730.

    PubMed  Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284:604–607.

    PubMed  Google Scholar 

  • Plasterk, R.H.A., 1991. Frameshift control of IS1 transposition. Trends Genet. 7:203–204.

    PubMed  Google Scholar 

  • Raabe, T., E. Jenny & J. Meyer, 1988. A selection cartridge for rapid detection and analysis of spontaneous mutations including insertions of transposable elements in Enterobacteriaceae. Mol. Gen. Genet. 215:176–180.

    PubMed  Google Scholar 

  • Rodriguez, H., E.T. Snow, U. Bhat & E.L. Loechler, 1992. AnEscherichia coli plasmid-based, mutational system in whichsupF mutants are selectable — insertion elements dominate the spontaneous spectra. Mut. Res. 270:219–231.

    Google Scholar 

  • Ross, D.G., J. Swan & N. Kleckner, 1979. Nearly precise excision: a new type of DNA alteration associated, with the translocatable element Tn10. Cell 16:733–738.

    PubMed  Google Scholar 

  • Rusina, O.Y., E.E. Mirskaya, I.V. Andreeva & A.G. Skavronskaya, 1992. Precise excision of transposons and point mutations induced by chemicals. Mut. Res. 283:161–168.

    Google Scholar 

  • Sawyer, S.A., D.E. Dykhuizen, R.F. DuBose, L. Green, T. Mutangadure-Mhlanga, D.F. Wolczyk & D.L. Hartl, 1987. Distribution and abundance of insertion sequences among natural isolates ofEscherichia coli. Genetics 115:51–63.

    PubMed  Google Scholar 

  • Schnetz, K. & B. Rak, 1992. IS5 — A mobile enhancer of transcription inEscherichia coli. Proc. Natl. Acad. Sci. USA. 89:1244–1248.

    PubMed  Google Scholar 

  • Scott, J.R., 1992. Sex and the single circle: conjugative transposition. J. Bacteriol. 174:6005–6018.

    PubMed  Google Scholar 

  • Sekine, Y. & E. Ohtsubo, 1989. Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc. Natl. Acad. Sci. USA, 86:4609–4613.

    PubMed  Google Scholar 

  • Sengstag, C. & W. Arber, 1983. IS2 insertion, is a major cause of spontaneous mutagenesis of the bacteriophage P1: non random distribution of target sites. EMBO J. 2:67–71.

    PubMed  Google Scholar 

  • Toussaint, A. & A. Résibois, 1983. Phage Mu: transposition as a life-style, pp. 105–158 in Mobile Genetic Elements edited by J. Shapiro, Acad. Press. Inc., Orlando.

    Google Scholar 

  • Wang, A. & J.R. Roth, 1988. Activation of silent genes by transposons Tn5 and Tn10. Genetics 120:875–885.

    PubMed  Google Scholar 

  • Young, J.P.W., 1989. The population genetics of bacteria. pp 417–438 in Genetics of Bacterial Diversity edited by D.A. Hopwood and K.E. Chater, Acad. Press Lim, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blot, M. Transposable elements and adaptation of host bacteria. Genetica 93, 5–12 (1994). https://doi.org/10.1007/BF01435235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435235

Key words

Navigation