Skip to main content
Log in

A Bethe-Salpeter basis for meson and baryon spectra under harmonic confinement

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

The Bethe-Salpeter equation forq−q andqqq systems derived in the preceding paper [8] in the instantaneous approximation are solved algebraically for harmonic confinement. The approximateq−q spectrum for all flavour is expressible asF(M)=N+3/2, where

$$\begin{gathered} F\left( M \right) = \left( {M^2 - 4m_q^2 } \right)\Omega _{_{\rm M} }^{ - 1} - \Omega _{\rm M} M^{ - 2} \gamma ^{ - 2} \hfill \\ \cdot \left( {2J \cdot S - 3 - Q_N } \right) + F_{QCD} \hfill \\ \end{gathered} $$

\(\Omega _{\rm M} = 8(Mm)_q )^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \tilde \omega \gamma \) is a mass-dependent FKR-like spring constant\(\tilde \omega \)(=0.15 GeV) a universal flavourindependent parameter, and γ(≈1) a slowly varying quantity. J·S represents the spin-dependent effects andQ N, a quadratic function ofN, comprises some significant momentum dependent corrections, whileF QCD is a small additional correction due to shortrange gluon exchange effects. An identical equation\(\bar F\)(M)=N+3 holds for non-strangeqqq excitations, with a very similar definition of\(\bar F\)(M) in terms of the same parameters\(\tilde \omega \) andm q. The calculated values ofF(M) and\(\bar F\) (M) in terms of theobserved masses,M, andm ud=0.28,m s=0.35,m c=1.40 (all in GeV), conform rather well to the principal features of the predictions, viz. (i) spin and flavour degeneracy ofq \(\bar q\) supermultiplet members at theF(M) level, despite huge variations in their actual masses (e. g. P vs V); and likewise forqqq members (e.g.,N L,Δ L) at the\(\bar F\) (M) level, and (ii) fulfilment of the unit spacing rule ΔF=1, Δ\(\bar F\)=1 for successive h.o. supermultiplets. TheP—V degeneracy at theF(M) level leads to the prediction ψ−η c ≈100±20 MeV. Finally, theP→l \(\bar l\) amplitudesf π,k , as well as the principalV→e + e widths are fairly well reproduced without extra parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Aubert et al.: Phys. Rev. Lett.33, 1404 (1976)

    Google Scholar 

  2. J.E. Augustin et al.: Phys. Rev. Lett.33, 1406 (1974)

    Google Scholar 

  3. C.S. Abrams et al.: Phys. Rev. Lett.33, 1453 (1974)

    Google Scholar 

  4. T. Applequist, H.D. Politzer: Phys. Rev. Lett.34, 43 (1975)

    Google Scholar 

  5. E. Eichten et al.: Phys. Rev. Lett.34, 369 (1975)

    Google Scholar 

  6. O.W. Greenberg: Phys. Rev. Lett.13, 594 (1964)

    Google Scholar 

  7. R.H. Dalitz: In: Proc. of the XIII Intl. Conf. on HEP (1966). Berkeley: Univ. of California Press 1967

    Google Scholar 

  8. R.P. Feynman, M. Kislinger, R. Ravndal: Phys. Rev.D3, 2706 (1971), referred to as FKR

    Google Scholar 

  9. J.L. Richardson, Phys. Lett.82B, 272 (1979).

    Google Scholar 

  10. A.N. Mitra: Z. Phys. C8, 25 (1981)

    Google Scholar 

  11. A. de Rujulas, H. Georgi, S.L. Glashow: Phys. Rev.D12, 147 (1975)

    Google Scholar 

  12. Eg. N. Isgur, G. Karl: Phys. Rev.D18, 4187 (1978)

    Google Scholar 

  13. H. Leutwyler J. Stern: Phys. Lett.73B, 75 (1978)

    Google Scholar 

  14. cf. H.A. Bethe, E.E. Salpeter: Handbuch der Physik. Bd. 35, p. 88. Berlin, Göttingen, Heidelburg: Springer (1957)

    Google Scholar 

  15. See. e.g., D. Gromes: Nucl. Phys.B131, 80, appendix, (1977)

    Google Scholar 

  16. C.H.L. Smith: Ann. Phys. (N.Y.)53, 521 (1969)

    Google Scholar 

  17. V.A. Novikov et al.: Phys. Rep.41C, 1 (1978)

    Google Scholar 

  18. G.C. Joshi, R. Anderson: Phys. Rev.D20, 736 (1979)

    Google Scholar 

  19. C. Brickman et al.: (PDG) Phys. Lett.75B, 1 (1978)

    Google Scholar 

  20. See, e.g. The Proceedings of the Fermilab Conf., August, 1979

  21. R. Van Royen, W.F. Weisskopf, Nuovo Cimento50A, 583 (1967); referred to as V.W.

    Google Scholar 

  22. H. Fritzsch, M. Gell-Mann, H. Leutwyler: Phys. Lett.B47, 365 (1973)

    Google Scholar 

  23. E.g., M. Krammer, H. Kraseman:Quarkonia, DESY 79/20, 1979

  24. See also a series of recent papers by. S.P. Misra: e.g., Phys. Rev.D18, 4103 (1978)

    Google Scholar 

  25. See, e.g., A.N. Mitra, Phy. Rev.150, 839 (1966); other references therein

    Google Scholar 

  26. See, e.g., R. Horgan, R.H. Dalitz: Nucl. Phys.B66, 135 (1973)

    Google Scholar 

  27. A.N. Mitra: Phys. Rev.D11, 3270 (1975)

    Google Scholar 

  28. See also, R.K. Bhaduri et al.: Phys. Rev. Lett.44, 1369 (1980)

    Google Scholar 

  29. See, e.g., A. Billoire, A. Morel: Nucl. Phys.B135, 131 (1978)

    Google Scholar 

  30. A.N. Mitra: Phys. Lett.89B, 65 (1979)

    Google Scholar 

  31. P. Hasenfratz et al.: CERN-TH-2837, 2838 (1980)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, A.N., Santhanam, I. A Bethe-Salpeter basis for meson and baryon spectra under harmonic confinement. Z. Phys. C - Particles and Fields 8, 33–42 (1981). https://doi.org/10.1007/BF01429828

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01429828

Keywords

Navigation