Skip to main content
Log in

Rate equations and transient phenomena in semiconductor lasers

  • Papers
  • Published:
Opto-electronics Aims and scope Submit manuscript

Abstract

This contribution attempts to review certain resonance effects which occur in the dynamic behaviour of semiconductor lasers. To study these effects theoretically, a rate equation approach is used for single-mode operation in the region of lasing threshold.

The two basic rate equations are given and their transient solutions discussed. The existence of two time constants in these equations, viz. the electron lifetimeτ e and the photon lifetimeτ e; gives rise to a characteristic resonance frequency in the GHz region. This resonance manifests itself in transient ‘spiking’ effects, in quantum noise phenomena, and in high-frequency modulation experiments. In a modified form the resonance frequency may also be studied in lasers with external cavities and in double-diode configurations (or, equivalently, conventional devices with non-uniform excitation along the cavity length).

In the latter two examples mentioned above, the resonance is excited by optical feedback of the laser radiation into the active medium via a ‘lossy’ or insufficiently inverted region. In the ‘spiking’ oscillations commonly observed at the commencement of laser operation, the initial ‘population overshoot’ is the cause of the resonance. For the case of quantum noise it is the requirement that the photon and electron populations have integer values which supplies the driving force-a true quantum effect. High-frequency modulation experiments directly reveal the same resonance frequency where a strong maximum in modulation intensity occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Lasher,Solid State Electronics 7 (1964) 707–716.

    Google Scholar 

  2. H. Statz, C. L. Tang, andJ. M. Lavine,J. Appl. Phys. 35 (1964) 2581–2585.

    Google Scholar 

  3. J. Vilms, L. Wandinger, andK. L. Klohn,IEEE J. Quant. Elect. QE-2 (1966) 80–83.

    Google Scholar 

  4. N. G. Basov,ibid QE-4 (1968) 855–864.

    Google Scholar 

  5. H. Haug,Phys. Rev. 184 (1969) 338–348.

    Google Scholar 

  6. M. J. Adams,Phys. stat. sol. (a) 1 (1970) 143–152.

    Google Scholar 

  7. M. Cross, to be published.

  8. M. J. Adams,Solid State Electronics 12 (1969) 661–669.

    Google Scholar 

  9. A. R. Goodwin andG. H. B. Thompson,IEEE J. Quant. Electr. QE-6 (1970) 311–312.

    Google Scholar 

  10. A. R. Goodwin andP. R. Selway,ibid QE-6 (1970) 285–290.

    Google Scholar 

  11. E. Pinkas, B. I. Miller, I. Hayashi, andP. W. Foy,J. Appl. Phys. 43 (1972) 2827–2835.

    Google Scholar 

  12. F. Stern,Phys. Rev. 148 (1966) 186–194.

    Google Scholar 

  13. M. J. Adams,Brit. J. Appl. Phys. (J. Phys. D)2 (1969) 1549–1553.

    Google Scholar 

  14. C. J. Hwang,Phys. Rev. B2 (1970) 4126–4134.

    Google Scholar 

  15. M. Ettenberg andH. Kressel,J. Appl. Phys. 43 (1972) 1204–1210.

    Google Scholar 

  16. V. D. Kurnosov, V. I. Magalyas, A. A. Pleshkov, L. A. Rivlin, V. G. Trukhan andV. V. Tsvetkov, Soviet Physics —JETP Letters 4 (1966) 303–305.

    Google Scholar 

  17. R. Roldan,Appl. Phys. Letts. 11 (1967) 346–348.

    Google Scholar 

  18. J. R. Andrews, reported at the Fibre Optics Communications Meeting, London (1972).

  19. J. C. Dyment, J. E. Ripper, andT. P. Lee,J. Appl. Phys. 43 (1972) 452–457.

    Google Scholar 

  20. J. E. Ripper,ibid 43 (1972) 1762–1763.

    Google Scholar 

  21. D. E. Mccumber,Phys. Rev. 141 (1966) 306–322.

    Google Scholar 

  22. H. Haug andH. Haken,Z. Phys. 204 (1967) 262–275.

    Google Scholar 

  23. D. J. Morgan andM. J. Adams,Phys. stat. sol. (a) 11 (1972) 243–253.

    Google Scholar 

  24. L. A. D'asaro, J. M. Cherlow, andT.L. Paoli,IEEE Jl. Quant. Electr. QE-4 (1968) 164–167.

    Google Scholar 

  25. T. L. Paoli andJ. E. Ripper,Phys. Rev. A2 (1970) 2551–2555.

    Google Scholar 

  26. T. Ikegami andY. Suematsu,IEEE Jl. Quant. Electr. QE-4 (1968) 148–151.

    Google Scholar 

  27. E. Mohn,Electronics Letters 5 (1969) 261–262.

    Google Scholar 

  28. T. Ikegami andY. Suematsu,Proc. IEEE 55 (1967) 122–123.

    Google Scholar 

  29. Idem, Electronics and Communications in Japan 53-B (1970) 69–75.

    Google Scholar 

  30. M. J. Adams, Proceedings of the International Conference on ‘Lasers and their Applications’, Dresden, DDR (1970) 743–753.

  31. K. Konnerth andC. Lanza,Appl. Phys. Letts. 4 (1964) 120–121.

    Google Scholar 

  32. G. Guekos andM. J. O. Strutt,Electronics Letters 3 (1967) 276–277.

    Google Scholar 

  33. H. D. Edmunds, C. DePalma andE. P. Harris,Appl. Optics 10 (1971) 1591–1596.

    Google Scholar 

  34. E. Mohn, R. F. Broom, Ch. Deutsch, andJ. Hatz,Phys. Letts. 24A (1967) 561–564.

    Google Scholar 

  35. R. F. Broom, E. Mohn, C. Risch andR. Salathé,IEEE Jl. Quant. Electr. QE-6 (1970) 328–334.

    Google Scholar 

  36. E. Mohn, Proceedings of the International Symposium on ‘Gallium Arsenide’, Dallas, Texas (IPPS, London), (1968) 101–109.

    Google Scholar 

  37. R. F. Broom andE. Mohn,J. Appl. Phys. 39 (1968) 4851–4852.

    Google Scholar 

  38. E. P. Harris,ibid 42 (1971) 892–893.

    Google Scholar 

  39. O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, andA. F. Suchkov, Soviet Physics —JETP Letters 12 (1970) 128–129.

    Google Scholar 

  40. C. A. Brackett,IEEE Jl. Quant. Electr. QE-8 (1972) 66–69.

    Google Scholar 

  41. T. L. Paoli andJ. E. Ripper,Phys. Rev. Letts. 22 (1969) 1085–1088.

    Google Scholar 

  42. Idem, Appl. Phys. Letts. 15 (1969) 105–107.

    Google Scholar 

  43. J. E. Ripper andT. L. Paoli,ibid 18 (1971) 466–468.

    Google Scholar 

  44. Idem, IEEE Jl. Quant. Electr. QE-8 (1972) 74–80.

    Google Scholar 

  45. N. G. Basov, V. N. Morozov, V. V. Nikitin, andA. S. Semenov, Soviet Physics —Semiconductors 1 (1968) 1305–1308.

    Google Scholar 

  46. Yu. m. Popov, G. M. Strakhovskii, andN. N. Shuikin,ibid 3 (1970) 943–947.

    Google Scholar 

  47. T. P. Lee andR. Roldan,IEEE Jl. Quant. Electr. QE-5 (1969) 551–552.

    Google Scholar 

  48. Idem, ibid QE-6 (1970) 339–352.

    Google Scholar 

  49. Yu. A. Drozhbin, Yu. P. Zakharov, V. V. Nikitin, A. S. Semenov, andV. A. Yakovlev, Soviet Physics —JETP Letters 5 (1967) 143–145.

    Google Scholar 

  50. K. Kobayashi, H. Yonezu, F. Saito, andY. Nannichi,Appl. Phys. Letts. 19 (1971) 323–324.

    Google Scholar 

  51. T. L. Paoli andJ. E. Ripper,Proc. IEEE 58 (1970) 1457–1465.

    Google Scholar 

  52. I. Hayashi, M. B. Panish, P. W. Foy, andS. Sumski,Appl. Phys. Letts. 17 (1970) 109–111.

    Google Scholar 

  53. Zh. I. Alferov, V. M. Andrew, D. Z. Garbuzov, Yu. V. Shilyaev, E. P. Morozov, E. L. Portnol, andV. G. Trofim, Soviet Physics —Semiconductors 4 (1971) 1573–1575.

    Google Scholar 

  54. J. C. Dyment, L. A. D'asaro, J. C. North, B. I. Miller, andJ. E. Ripper,Proc. IEEE 60 (1972) 726–728.

    Google Scholar 

  55. T. Tsukada, H. Nakashima, J. Umeda, S. Nakamura, N. Chinone, R. Ito, andO. Nakada Appl. Phys. Letts. 20 (1972) 344–345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A part of this work was reported at the Conference on ‘Semiconductor Injection Lasers and their Applications’, Cardiff, March 1972.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.J. Rate equations and transient phenomena in semiconductor lasers. Opto-electronics 5, 201–215 (1973). https://doi.org/10.1007/BF01414739

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01414739

Keywords

Navigation