Skip to main content
Log in

Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: Local changes in cerebral glucose utilization

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

An experimental model was used to investigate acute alterations of cerebral metabolic activity in rats subjected to subarachnoid haemorrhage (SAH). Haemorrhages were produced in anaesthetized animals by injecting 0.3 ml of autologous, arterial nonheparinized blood into the cisterna magna. Control rats received subarachnoid injections of mock-cerebrospinal fluid to study the effect of sudden raised intracranial pressure, or underwent sham operation. Three hours after SAH rats were given an intravenous injection of [14C]-2-deoxyglucose. Experiments were terminated by decapitation, and the brains were removed and frozen. Regional brain metabolic activity was studied by quantitative autoradiography. In comparison with sham-operated controls, cerebral metabolic activity was diffusely decreased after SAH. Statistically significant decreases in metabolic rate were observed in 23 of 27 brain regions studied. Subarachnoid injections of mock-cerebrospinal fluid also produced depression of cerebral metabolic activity, but quantitatively these changes were not as pronounced and diffuse as in SAH rats. The present study shows that a widespread depression of brain metabolism occurs in the acute stage after experimental SAH and is probably secondary to the Subarachnoid presence of blood itself and/or blood products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26: 1086–1092

    PubMed  Google Scholar 

  2. Carpenter DA, Grubb RL, Tempel LW, Powers W (1991) Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 11: 837–844

    PubMed  Google Scholar 

  3. d'Avella D, Germanò A, Santoro G,et al (1990) Effect of experimental subarachnoid hemorrhage on CSF eicosanoids in the rat. J Neurotrauma 7: 121–129

    PubMed  Google Scholar 

  4. d'Avella D, Zuccarello M, Tomasello F (1993) Protective effect of U78157G on local cerebral glucose utilization in the acute stage following subarachnoid hemorrhage (SAH). In: Findlay JM (ed) Cerebral vasospasm. Elsevier, Amsterdam, pp 427–430

    Google Scholar 

  5. d'Avella D, Cicciarello R, Gagliardi ME,et al (1994) Progressive perturbations in cerebral energy metabolism after experimental whole-brain radiation in the therapeutic range. J Neurosurg 81: 774–779

    PubMed  Google Scholar 

  6. d'Avella D, Germano A, Tomasello F (1994) Early blood-brain barrier changes after experimental subarachnoid haemorrhage: a quantitative and electron microscopy study. In: Pasqualin A, Da Pian R (eds) New trends in management of cerebro-vascular malformations. Springer, Wien New York, pp 48–51

    Google Scholar 

  7. Delgado TJ, Arbab MAR, Diemer NH, Svendgaard NA (1986) Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism during the late phase of cerebral vasospasm. J Cereb Blood Flow Metab 6: 590–599

    PubMed  Google Scholar 

  8. Delgado TJ, Diemer NH, Svendgaard NA (1986) Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem. J Cereb Blood Flow Metab 6: 600–606

    PubMed  Google Scholar 

  9. Doczi T (1985) The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien) 77: 110–132

    Google Scholar 

  10. Dorsch NW, Branston NM, Symon L (1989) Intracranial pressure changes following primate subarachnoid hemorrhage. Neurol Res 11: 201–204

    PubMed  Google Scholar 

  11. Faraci FM (1993) Endothelium-derived vasoactive factors and regulation of the cerebral circulation. Neurosurgery 33: 648–658

    PubMed  Google Scholar 

  12. Fein JF (1975) Cerebral energy metabolism after subarachnoid hemorrhage. Stroke 6: 1–8

    PubMed  Google Scholar 

  13. Fein JF (1976) Brain energetics and circulatory control after subarachnoid hemorrhage. J Neurosurg 45: 498–507

    PubMed  Google Scholar 

  14. Germanò A, d'Avella D, Cicciarello Ret al (1992) Blood-brain barrier permeability changes after experimental subarachnoid hemorrhage. Neurosurgery 30: 882–886

    PubMed  Google Scholar 

  15. Germanò A, Dixon CE, d'Avella D,et al (1994) Behavioral deficits following experimental subarachnoid hemorrhage in the rat. J Neurotrauma 11: 345–353

    PubMed  Google Scholar 

  16. Goochee C, Rasband W, Sokoloff L (1980) Computerized densitometry and color coding of (14C) deoxyglucose autoradiography. Ann Neurol 7: 359–370

    PubMed  Google Scholar 

  17. Grubb RL, Raichle ME, Eichung JO, Gado MH (1977) Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow and oxygen utilization in humans. J Neurosurg 46: 446–453

    PubMed  Google Scholar 

  18. Haley EC, Kassell NF, Torner JC,et al (1993) A randomized controlled trial of high-dose intravenous nicardipine in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg 78: 537–547

    PubMed  Google Scholar 

  19. Haley EC Jr., Kassell NE, Wayne MA,et al (1995) Phase II trial of tirilazad in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg 82: 786–790

    PubMed  Google Scholar 

  20. Hall ED, Travis MA (1988) Effect of nonglucocoticoid 21-aminosteroid U74006F on acute cerebral hypoperfusion following experimental subarachnoid hemorrhage. Exper Neurol 102: 244–248

    Google Scholar 

  21. Hauerberg J, Juhler M (1994) Cerebral blood flow autoregulation in acute intracranial hypertension. J Cereb Blood Flow Metab 14: 519–525

    PubMed  Google Scholar 

  22. Hauerberg J, Rasmussen G, Juhler M, Gjerris F (1995) The effect of nimodipine on autoregulation of cerebral blood flow after subarachnoid hemorrhage in rat. Acta Neurochir (Wien) 132: 98–103

    Google Scholar 

  23. Iwanaga H, Okuchi K, Koshimae N, Goda K, Imanishi M, Tokunaga H, Aoki H, Boku E, Sakaki T (1995) Effects of intravenous nitroglycerine combined with dopamine on intracranial pressure and cerebral arteriovenous oxygen difference in patients with acute subarachnoid haemorrhage. Acta Neurochir (Wien) 136: 175–180

    Google Scholar 

  24. Jackowski A, Crockard A, Burnstock G, Lincoln J (1989) Alterations in serotonin and neuropeptide Y content of cerebrovascular sympathetic nerves following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 9: 271–279

    PubMed  Google Scholar 

  25. Jackowski A, Crockard A, Burnstock G,et al (1990) The time course of intracranial pathophysiological changes following experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 10: 835–849

    PubMed  Google Scholar 

  26. Jakobsen M, Enevoldsen E, Bjerre P (1990) Cerebral blood flow and metabolism following subarachnoid hemorrhage: cerebral oxygen uptake and global blood flow during the acute period in patients with SAH. Acta Neurol Scand 82: 174–182

    PubMed  Google Scholar 

  27. Jakobsen M, Skjodt T, Enevoldsen E (1991) Cerebral blood flow and metabolism following subarachnoid hemorrhage: effect of subarachnoid blood. Acta Neurol Scand 83: 226–233

    PubMed  Google Scholar 

  28. Jakubowski J, Bell BA, Symon L,et al (1982) A primate model of subarachnoid hemorrhage: changes in regional cerebral blood flow, autoregulation, carbon dioxide reactivity, and central conduction time. Stroke 13: 601–611

    PubMed  Google Scholar 

  29. Kamiya K, Kujama H, Syman L (1983) An experimental study of the acute stage of subarachnoid hemorrhage. J Neurosurg 59: 917–924

    PubMed  Google Scholar 

  30. Marzatico F, Gaetani P, Rodriguez Y, Baena R,et al (1988) Bioenergetics of different brain areas after experimental subarachnoid hemorrhage in rats. Stroke 19: 378–384

    PubMed  Google Scholar 

  31. McCormick PW, McCormick J, Zabramski JM,et al (1994) Hemodynamics of subarachnoid hemorrhage arrest. J Neurosurg 80: 710–715

    PubMed  Google Scholar 

  32. Meyer CHA, Lowe D, Meyer M,et al (1983) Progressive change in cerebral blood flow during the first three weeks after subarachnoid haemorrhage. Neurosurgery 12: 58–76

    PubMed  Google Scholar 

  33. Mickey B, Vorstrup S, Voldby B,et al (1984) Serial measurement of regional cerebral blood flow in patients with SAH using133Xe inhalation and emission computerized tomography. J Neurosurg 60: 916–922

    PubMed  Google Scholar 

  34. Öhman J, Servo A, Heiskanen O (1991) Long-term effects of nimodipine on cerebral infarcts and outcome after aneurysmal subarachnoid hemorrhage and surgery. J Neurosurg 74: 8–13

    PubMed  Google Scholar 

  35. Paxinos G, Watson C (1982) The brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  36. Rasmussen G, Hauerberg J, Waldemar G,et al (1992) Cerebral blood flow autoregulation in experimental subarachnoid hemorrhage in rat. Acta Neurochir (Wien) 119: 128–133

    Google Scholar 

  37. Sakaki S, Ohta S, Nakamura H, Takeda S (1988) Free radical reaction and biological defense mechanism in the pathogenesis of prolonged vasospasm in experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 8: 1–8

    PubMed  Google Scholar 

  38. Sasaki T, Kassell NF, Yamashita M,et al (1985) Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage. J Neurosurg 63: 433–440

    PubMed  Google Scholar 

  39. Schneider GH, v Helden A, Lanksh WR, Unterberg A (1995) Continuous monitoring of jugular bulb oxygen saturation in comatose patients. Therapeutic implications. Acta Neurochir (Wien) 134: 71–75

    Google Scholar 

  40. Seifert V, Löffler BM, Zimmermann M,et al (1995) Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 82: 55–62

    PubMed  Google Scholar 

  41. Sokoloff L, Reivich M, Kennedy C,et al (1977) The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    PubMed  Google Scholar 

  42. Solomon RA, Lobo Antunes J, Chen RYZ,et al (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new model. Stroke 16: 58–64

    PubMed  Google Scholar 

  43. Solomon RA, Lovitz RL, Hegemann MT,et al (1987) Regional cerebral metabolic activity in the rat following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 7: 193–198

    PubMed  Google Scholar 

  44. Talacchi A (1993) Sequential measurements of cerebral blood flow in the acute phase of subarachnoid hemorrhage. J Neurosurg Sci 37: 9–18

    PubMed  Google Scholar 

  45. Tildon JT, Stevenson JH (1984) Decreased oxidation of labeled glucose by dissociated brain cells in the presence of fetal bovine serum. Science 224: 903–904

    PubMed  Google Scholar 

  46. Tildon JT, Stevenson JH, Roeder LM (1987) Serum effects on substrate oxidation by dissociated brain cells: possible sites of action. Brain Res 403: 127–135

    PubMed  Google Scholar 

  47. Travis MA, Hall ED (1987) The effects of chronic two-fold dietary vitamin E supplementation on subarachnoid hemorrhage-induced brain hypoperfusion. Brain Res 418: 366–370

    PubMed  Google Scholar 

  48. Umanski F, Kaspi T, Shalit M (1983) Regional cerebral blood flow in the acute stage of experimentally induced subarachnoid hemorrhage. J Neurosurg 58: 210–216

    PubMed  Google Scholar 

  49. Voldby B, Enevoldsen EM, Jensen FT (1985) Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg 62: 48–58

    PubMed  Google Scholar 

  50. Zuccarello M, Andersen DK (1989) Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats. Stroke 20: 367–371

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

d'Avella, D., Cicciarello, R., Zuccarello, M. et al. Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: Local changes in cerebral glucose utilization. Acta neurochir 138, 737–744 (1996). https://doi.org/10.1007/BF01411481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411481

Keywords

Navigation