Skip to main content
Log in

Nonlinear relaxation and fluctuations of damped quantum systems

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The paper reexamines the treatment of irreversible quantum systems by master equations. Shortcomings of the conventional theory of quantum Markov processes pointed out by Talkner are analyzed. It is shown that a frequently used quantum regression hypothesis is not correct, in general. A new generalized master equation determining the relaxation to equilibrium is derived by means of time-dependent projection operator techniques. It is shown that this master equation also determines the time evolution of equilibrium correlations and response functions. The Markovian approximation is discussed, and a new type of Markovian limit, the Brownian motion limit, is introduced besides the weak coupling limit. The shortcomings of the conventional approach are resolved by deriving new formulae for the time evolution of the correlation and response functions of a quantum Markov process. The symmetries of the process are emphasized, and it is shown how the fluctuation-dissipation theorem and the detailed balance symmetry emerge from the master equation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mori, H.: Progr. Theor. Phys.33, 423 (1965)

    Article  ADS  MATH  Google Scholar 

  2. Robertson, B.: Phys. Rev.144, 151 (1966)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Grabert, H.: J. Stat. Phys.19, 479 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  4. Grabert, H.: Projection operator techniques in nonequilibrium statistical mechanics, Springer Tracts in Modern Physics. Vol. 95. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  5. Green, M.S.: J. Chem. Phys.20, 1281 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  6. Pauli, W.: Festschrift zum 60. Geburtstage A. Sommerfeld. p. 30. Leipzig: Hirzel 1928

    Google Scholar 

  7. Wangsness, R.K., Bloch, F.: Phys. Rev.89, 728 (1953)

    Article  ADS  MATH  Google Scholar 

  8. Redfield, A.G.: IBM J. Res. Develop.1, 19 (1957)

    Article  Google Scholar 

  9. Argyres, P.N., Kelley, P.L.: Phys. Rev.134, A 98 (1964)

    Article  ADS  Google Scholar 

  10. Haken, H., Weidlich, W.: In: Proceedings of the International School of Physics “Enrico Fermi”. Vol.42, p. 630. New York: Academic Press 1969

    Google Scholar 

  11. Haken, H.: in Handbuch der Physik. Vol. XXV/2c. Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  12. Haake, F.: Springer Tracts in Modern Physics. Vol. 66, p. 98. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  13. Davies, E.B.: Quantum theory of open systems. London: Academic Press 1976

    MATH  Google Scholar 

  14. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys.17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. Spohn, H.: Rev. Mod. Phys.53, 569 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. Talkner, P.: Dissertation, Univ. Stuttgart (1979)

  17. Haken, H., Weidlich, W.: Z. Phys.205, 96 (1967)

    Article  ADS  Google Scholar 

  18. Einstein, A.: Ann. Phys. (Leipzig)17, 549 (1905)

    ADS  MATH  Google Scholar 

  19. Onsager, L.: Phys. Rev.37, 405,38, 2265 (1931)

    Article  ADS  MATH  Google Scholar 

  20. Lax, M.: Phys. Rev.172, 350 (1968)

    Article  ADS  Google Scholar 

  21. Kadanoff, L.P., Baym, G.: Quantum statistical mechanics. New York: Benjamin 1962

    MATH  Google Scholar 

  22. Callen, H.B., Welton, T.A.: Phys. Rev.83, 34 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kubo, R.: Rep. Prog. Phys. (London)29, 255 (1966)

    Article  ADS  MATH  Google Scholar 

  24. Lindblad, G.: J. Math. Phys.20, 2081 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Lewis, J.T.: Phys. Rep. C77, 339 (1981)

    Article  ADS  Google Scholar 

  26. Jaynes, E.T.: In: Statistical physics. Brandeis Lectures. Vol. 3. New York: Benjamin 1962

    Google Scholar 

  27. Grabert, H.: Phys. Lett.57 A, 105 (1976)

    Article  Google Scholar 

  28. Zwanzig, R.: Phys. Rev.124, 983 (1961)

    Article  ADS  MATH  Google Scholar 

  29. Grabert, H., Talkner, P., Hänggi, P.: Z. Phys. B — Condensed Matter26, 389 (1977)

    ADS  Google Scholar 

  30. Grabert, H., Talkner, P., Hänggi, P., Thomas, H.: Z. Phys. B — Condensed Matter29, 273 (1978)

    ADS  Google Scholar 

  31. Messiah, A.: Quantum mechanics. Vol. 2. Amsterdam: North Holland 1968

    Google Scholar 

  32. Grabert, H., Talkner, P.: (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabert, H. Nonlinear relaxation and fluctuations of damped quantum systems. Z. Physik B - Condensed Matter 49, 161–172 (1982). https://doi.org/10.1007/BF01314753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314753

Keywords

Navigation