Skip to main content
Log in

A brief summary of the history of the detection of creatine kinase isoenzymes

  • Muscle Energy Metabolism
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Markert CL, Moller F: Multiple forms of enzymes: Tissue, ontogenetic and species specific patterns. Proc Nat Acad Sci U.S. 45:753–763, 1959

    Google Scholar 

  2. Kuby SA, Noda L, Lardy HA: Adenosine-triphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem 209:191–201, 1954

    PubMed  Google Scholar 

  3. Dance N, Watts DC: Comparison of creatine phosphertransferase from rabbit and brown-hare muscle. Biochem J 84:114P–115P

  4. Burger A, Eppenberger M, Wiesmann U, Richterich R: Isoenzyme der Kreatinkinase. Helv Physiol Acta 21: C7-C10, 1963

    Google Scholar 

  5. Eppenberger HM, Eppenberger M, Richterich R, Aebi H: The ontogeny of creatine kinase isoenzymes. Develop Biol 10:1–16, 1964

    PubMed  Google Scholar 

  6. Dawson DM, Eppenberger HM, Kaplan NO: Creatine kinase: Evidence for a dimeric structure. Biochem Biophys Res Comm 21: 346–353, 1965

    PubMed  Google Scholar 

  7. Eppenberger HM, Dawson DM, Kaplan NO: The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem 242:204–209, 1967

    PubMed  Google Scholar 

  8. Thomson AR, Eveleigh JW, Miles BJ: Amino acid sequence around the reactive Thiol groups of adenosine triphosphate-creatine phosphotransferase. Nature 203:267–269, 1964

    PubMed  Google Scholar 

  9. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high & fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40, 1992

    PubMed  Google Scholar 

  10. Jacobs H, Heldt WH, Klingenberg M: High activity of CK in mitochondria from muscle and brain. Evidence for a separate mitochondrial isoenzyme of CK. Biochem Biophys Res Comm 16: 516–521, 1964

    PubMed  Google Scholar 

  11. Schlegel J, Wyss M, Schürch U, Schnyder T, Quest A, Wegmann G, Eppenberger HM, Wallimann T: Mitochondrial Creatine Kinase from cardiac muscle and brain are two distinct isoenzymes but both from octameric molecules. J Biol Chem 263:16963–16969, 1988

    PubMed  Google Scholar 

  12. Schlegel J, Wyss M, Eppenberger HM, Wallimann T: Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. J Biol Chem 265:9221–9227, 1990

    PubMed  Google Scholar 

  13. Eppenberger ME, Eppenberger HM, Kaplan NO: Evolution of creatine kinase. Nature 214:239–241, 1967

    PubMed  Google Scholar 

  14. Quest A, Eppenberger HM, Wallimann: Purification of brain-type creatine kinase (B-CK) from several tissues of the chicken: B-CK Sunspecies. Enzyme: 33–42, 1989

  15. Wirz T, Brändle U, Soldati T, Hossle JP, Perriard JC: A unique chicken B-creatine kinase gene gives rise to two B-creatine kinase isoproteins with distinct M termini by alternative splicing. J Biol Chem 265:11656–11666, 1990

    PubMed  Google Scholar 

  16. Turner DC, Maier V, Eppenberger HM: Creatine kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells. Develop Biol 37:63–89, 1974

    PubMed  Google Scholar 

  17. Perriard JC, Perriard ER, Eppenberger HM: Detection and relative quantitation of mRNA for creatine kinase isoenzymes in RNA from myogenic cell cultures and embryonic chicken tissues. J Biol Chem 253:6529–6535, 1978

    PubMed  Google Scholar 

  18. Jaynes JB, Chamberlain JS, Buskin JN, Johnson JE, Hauschka SD: Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol Cell Biol 6:2855–2864, 1986

    PubMed  Google Scholar 

  19. Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, Weintraub H: MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831, 1989

    PubMed  Google Scholar 

  20. Turner DC, Wallimann T, Eppenberger HM: A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70:702–705, 1973

    PubMed  Google Scholar 

  21. Wallimann T, Schlösser T, Eppenberger HM: Function of M line bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem 259:5238–5246, 1985

    Google Scholar 

  22. Schäfer BW, Perriard JC: Intracellular targeting of isoproteins in muscle cytoarchitecture. J Cell Biol 106:1161–1170, 1988

    PubMed  Google Scholar 

  23. Wyss M, Smeitink J, Wevers R, Wallimann T: Mitochondrial creatine kinase: a key enzyme of energy metabolism. Biochim Biophys Acta 1102:119–166, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppenberger, H.M. A brief summary of the history of the detection of creatine kinase isoenzymes. Mol Cell Biochem 133, 9–11 (1994). https://doi.org/10.1007/BF01267944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267944

Keywords

Navigation