Skip to main content
Log in

Differential coupling of GABA-A and GABA-B receptors to the noradrenergic system

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The GABA-A receptor agonist THIP, or the mixed GABA-A/GABA-B receptor agonist progabide dose dependency increased the release of norepinephrine (as measured by the production of MHPG) in the cerebral cortex and hippocampus. This effect was partially reversed by treatment with the GABA-A receptor antagonist bicuculline. In contrast, the GABA-B receptor agonist baclofen decreased the release of norepinephrine in the cerebral cortex and hippocampus. Pretreatment with the presynaptic noradrenergic neurotoxin DSP4 increased the Bmax for beta-adrenergic receptor binding in the cerebral cortex and hippocampus. This effect was partially prevented by chronic (14 day) treatment with either the beta-adrenergic agonist clenbuterol or the GABA-B receptor agonist baclofen. In contrast, chronic (14 day) administration with either the GABA-A receptor agonist THIP or the antidepressant imipramine failed to alter the increase in betaadrenergic receptor binding produced by DSP4 pretreatment. These data suggest that the GABA-A receptor may be coupled to the presynaptic noradrenergic neuron and modulate the release of norepinephrine, while the GABA-B receptor is coupled to the postsynaptic noradrenergic neuron and likely functions through the cyclic AMP generating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, P. R., Johnston, G. A. R.: GABA agonists and antagonists. Biochem. Pharmacol.28, 2697–2703 (1979).

    PubMed  Google Scholar 

  • Anden, N., Wachtel, H.: Biochemical effects of baclofen (beta-parachloro-phenyl-GABA) on dopamine and noradrenaline in the rat brain. Acta Pharmacol. Toxicol.40, 310–320 (1977).

    Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L.: Evidence that SL75102 is an agonist at GABA-b as well as GABA-a receptors. Neuropharmacology21, 391–397 (1982).

    PubMed  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., Turnbull, M.: Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature283, 92–94 (1980).

    PubMed  Google Scholar 

  • Bradford, M. M.: A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem.72, 248–252 (1976).

    PubMed  Google Scholar 

  • Bylund, D. B.: Analysis of receptor binding data, in Receptor Binding Techniques. In: Neuroscience Short Course Syllabus, pp. 70–99.1980.

  • Desarmenien, M., Feltz, P., Loeffler, J. P., Occhipinti, G., Santangelo, F.: Multiple GABA receptors on A8 and C primary afferent neurons in the adult rat. Br. J. Pharmacol.76, 289–293 (1982).

    Google Scholar 

  • Dolphin, A., Adrien, J., Hamon, M., Bockaert J.: Identity of3H-dihydroaprenolol binding sites and beta-adrenergic receptors coupled with adenylate cyclase in the CNS: Pharmacological properties, distribution and adaptive responsiveness. Mol. Pharmacol.15, 1–10 (1979).

    PubMed  Google Scholar 

  • Dooley, D. J., Bittiger, H., Hauser, K. L., Bischoff, S. F., Waldmeier, P. C.: Alteration of central alpha-2 and beta-adrenergic receptors in the rat after DSP4, a selective noradrenergic neurotoxin. Neuroscience9, 889–894 (1983 a).

    PubMed  Google Scholar 

  • Dooley, D. J., Hauser, K. L., Bittiger, H.: Differential decrease of the central beta-adrenergic receptor in the rat after subchronic infusion of desipramine and clenbuterol. Neurochem. Int.3, 333–345 (1983 b).

    Google Scholar 

  • Dunlap, K.: Two types of GABA receptor on embryonic sensory neurons. Br. J. Pharmacol.74, 579–586 (1981).

    PubMed  Google Scholar 

  • Ferrari, R. A., Connell, M. J., Ferranio, R. G., Haubrich, D. A.: Measurement of 1-(4-hydroxy-3-methoxy)ethane-1,2-diol (MOPEG) in mouse brain and cat CSF by HPLC with electrochemical detection: Effects of yohimbine and mianserin. Soc. Neurosci. Abst.8, 887 (1982).

    Google Scholar 

  • Guidotti, A., Corda, M. G., Wise, B. C., Vaccarino, F., Costa, E.: GABA-ergic synapses: supramolecular organization and biochemical regulation. Neuropharmacol.22, 1471–1479 (1983).

    Google Scholar 

  • Hall, H., Ross, S. B., Sallemark, M.: Effect of destruction of central noradrenergic and serotonergic nerve terminals by systemic neurotoxins on the long-term effects of antidepressants on beta-adrenoceptors and 5-HTB binding sites in the rat cerebral cortex. J. Neural Transm.59, 9–23 (1984).

    PubMed  Google Scholar 

  • Hill, D. R., Bowery, N. G.:3H-baclofen and3H-GABA bind to bicucullineinsensitive GABA-B sites in rat brain. Nature290, 149–151 (1981).

    PubMed  Google Scholar 

  • Hill, D. R., Bowery, N. G., Hudson, A. L.: Inhibition of GABA-B receptor binding by guanyl nucleotides. J. Neurochemistry42, 652–657 (1981).

    Google Scholar 

  • Jonsson, G., Hallman, H., Ponzio, F., Ross, S.: DSP4 (N-[2-chloroethyl]-N-ethyl-2-bromobenzylamine)-A useful denervation tool for central and peripheral noradrenergic neurons. Eur. J. Pharmacol.72, 173–179 (1981).

    PubMed  Google Scholar 

  • Karbon, E. W., Duman, R., Enna, S. J.: Biochemical identification of multiple GABA-B binding sites: association with noradrenergic terminals in rat forebrain. Brain Res.274, 393–396 (1982).

    Google Scholar 

  • Karbon, E. W., Enna, S. J.: GABA agonists potentiate norepinephrine-stimulated adenylate cyclase in rat brain frontal cortex slices. Soc. Neurosci. Abst.13, 55 (1983).

    Google Scholar 

  • Kinnier, W. J., Chuang, D. M., Costa, E.: Down-regulation of3H-dihydroaprenolol and imipramine binding sites in brain of rats repeatedly treated with imipramine. Eur. J. Pharmacol.67, 289–295 (1980).

    PubMed  Google Scholar 

  • Korf, J., Venema, K.: DMI enhances the release on endogenous GABA and other neurotransmitter amino acids from rat thalamus. J. Neurochem.40, 946–955 (1983).

    PubMed  Google Scholar 

  • Krogsgaard-Larsen, P., Hjeds, H., Curtis, D. R., Lodge, D., Johnston, G. A. R.: Dihydromuscimol, thiomuscimol, and related heterocyclic compounds as GABA agonists. J. Neurochem.32, 1717–1726 (1979).

    PubMed  Google Scholar 

  • Lloyd, K. G., Morselli, P. L., Depoortere, H., Fournier, V., Scatton, B., Broekkamp, C., Worms, P., Bartholini, G.: The potential use of GABA agonists in psychiatric disorders: Evidence from studies with Progabide in animal models and clinical trials. Pharmacol. Biochem. Behav.18, 959–963 (1983).

    Google Scholar 

  • Magnusson, O., Nilsson, L. B., Westerlund, D.: Simultaneous determination of dopamine, DOPAC and homovanillic acid. Direct injection of supernatents from brain tissue homogenates in a liquid chromatographyelectrochemical detection system. J. Chromatography221, 237–247 (1980).

    Google Scholar 

  • Muhyaddin, M. S., Roberts, P. J., Woodruff, G. N.: Presynaptic GABA-B receptors and the regulation of3H-noradrenaline release from rat anococcygus muscle. Eur. J. Pharmacol.92, 9–14 (1983).

    PubMed  Google Scholar 

  • Scatton, B., Zivkovic, B., Dedek, J., Lloyd, K. G., Constantinidis, J., Tissot, R., Bartholini, G.: GABA receptor stimulation. 3. Effect of progabide (SL 76002) on norepinephrine, dopamine and 5-hydroxytryptamine turnover in rat brain areas. J. Pharmacol. Exp. Ther.220, 678–688 (1982).

    PubMed  Google Scholar 

  • Schweitzer, J. W., Schwartz, R., Friedhoff, A. J.: Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. J. Neurochemistry33, 377–379 (1979).

    Google Scholar 

  • Sulser, F., Mobley, P. L.: Regulation of central noradrenergic receptor function: New vistas on the mode of action of antidepressant treatment. In: Neuroreceptors: Basic and Clinical Aspects, pp. 321–335. 1981.

  • Suzdak, P. D., Gianutsos, G.: Parallel changes in GABA-ergic and noradrenergic receptor sensitivity following chronic administration of antidepressant and GABA-ergic drugs: A possible role of GABA in affective disorders. Neuropharmacol. (submitted, 1984).

  • Zivkovic, B., Scatton, B., Dedek, J., Bartholini, G.: GABA influence on noradrenergic transmissions: implications in mood regulation. Adv. Biosci.40, 195–201 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzdak, P.D., Gianutsos, G. Differential coupling of GABA-A and GABA-B receptors to the noradrenergic system. J. Neural Transmission 62, 77–89 (1985). https://doi.org/10.1007/BF01260417

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01260417

Keywords

Navigation