Skip to main content
Log in

Gliosis and axonal sprouting in the hippocampus of epileptic rats are associated with an increase of tenascin-C immunoreactivity

  • Published:
Journal of Neurocytology

Summary

Temporal lobe epilepsy is associated with neuronal death, gliosis and sprouting of mossy fibres in the hippocampus of human and rats. In the present study we show that immunoreactivity for tenascin-C (an extracellular matrix glycoprotein) increases in the hippocampus of epileptic rats. However, this increase was only observed in the cases displaying neuronal cell loss and glial reaction (i.e. after kainate treatment but not after kindling). Tenascin-C increase was particularly striking at Ammon's horn, where the antibody labelled both reactive astrocytes (confirmed by double-labelling experiments) and axonal plasma membranes. In the molecular layer tenascin-C immunoreactivity remained unchanged in both kindled or kainate treated rats. It is interesting that increased tenascin-C immunoreactivity was observed within zones in which axonal regeneration did not occur (the CA3 area in kainate-treated animals) whereas zones in which reactive synaptogenesis occurred (such as the CA3 area of kindled rats or the molecular layer of both kindled and kainate-treated rats) were devoid of tenascin-C immunoreactivity. We infer from these results that tenascin-C impedes the terminal sprouting of mossy fibres in CA3 of kainate-treated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartsch, S., Bartsch, U., Dörries, U., Faissner, A., Weller, A., Ekblom, P. &Schachner, M. (1992a) Expression of tenascin in the developing and adult cerebellar cortex.Journal of Neuroscience 12, 736–49.

    PubMed  Google Scholar 

  • Bartsch, U., Bartsch, S., Dörries, U. &Schachner, M. (1992b) Immunological localization of tenascin in the developing and lesioned adult mouse optic nerve.European Journal of Neuroscence 4, 338–52.

    Google Scholar 

  • Ben-Ari, Y. (1985) Limbic seizures and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.Neuroscience 14, 375–403.

    PubMed  Google Scholar 

  • Ben-Ari, Y. &Represa, A. (1990) Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus.Trends in Neuroscience 13, 312–18.

    Google Scholar 

  • Bourdon, M. A. &Ruoslahti, E. (1989) Tenascin mediates cell attachment through an RGD-development receptor.Journal of Cell Biology 108, 1149–55.

    Google Scholar 

  • Bourdon, M. A., Wikstrand, C. J., Furthmayr, H., Matthews, T. J. &Bigner, D. D. (1983) A human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody.Cancer Research 43, 2796–806.

    PubMed  Google Scholar 

  • Chuong, C.-M., Crossin, K. L. &Edelman, G. M. (1987) Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers.Journal of Cell Biology 104, 331–42.

    Google Scholar 

  • Crossin, K. L., Hoffman, S., Grumet, M., Thiery, J. -P. &Edelman, G. M. (1986) Site-restricted expression of cytotactin during development of the chicken embryo.Journal of Cell Biology 102, 1917–30.

    PubMed  Google Scholar 

  • Edelman, G. M. (1986) Cell adhesion molecules in neuronal histogenesis.Annual Review of Physiology 48, 417–30.

    PubMed  Google Scholar 

  • Erickson, H. P. (1993) Tenascin-C, tenascin-R and tenascin-X a family of talented proteins in search of a function.Current Opinion in Cell Biology 5, 869–76.

    PubMed  Google Scholar 

  • Faissner, A. &Kruse, J. (1990) J1/Tenascin is a repulsive substrate for central nervous system neurons.Neuron 5, 627–37.

    Google Scholar 

  • Faissner, A., Kruse, J., Chiquet-Ehrismann, R. &Mackie, E. (1988) The high-molecular-weight J1 glycoproteins are immunocytochemically related to tenascin.Differentiation 37, 104–14.

    PubMed  Google Scholar 

  • Fuss, B., Wintergerst, E.-S., Bartsch, U. &Schachner, M. (1993) Molecular characterization andin situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin.Journal of Cell Biology 120, 1237–49.

    PubMed  Google Scholar 

  • Goddard, G. V., Mcintyre, D. C. &Leech, C. K. (1969) A permanent change in brain function resulting from daily electric stimulation.Experimental Neurology 25, 295–330.

    PubMed  Google Scholar 

  • Grierson, J. P., Petroski, R. E., Ling, D. S. F. &Geller, H. M. (1990) Astrocyte topography and tenascin/cytotactin expression: correlation with the ability to support neuritic outgrowth.Developmental Brain Research 55, 11–19.

    PubMed  Google Scholar 

  • Grumet, M., Hoffman, S., Crossin, K. L. &Edelman, G. M. (1985) Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction.Proceedings of the National Academy of Sciences (USA) 82, 8075–79.

    Google Scholar 

  • Hoffman, S. &Edelman, G. M. (1987) A proteoglycan with HNK-1 antigen determinants is a neuron-associated ligand for cytotactin.Proceedings of the National Academy of Sciences (USA) 84, 2523–27.

    Google Scholar 

  • Hoffman, S., Crossin, K. L. &Edelman, G. M. (1988) Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules.Journal of Cell Biology 106, 519–32.

    PubMed  Google Scholar 

  • Husmann, K., Faissner, A. &Schachner, M. (1992) Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type 3 repeats.Journal of Cell Biology 116, 1475–86.

    Google Scholar 

  • Kruse, J., Keilhauer, G., Faissner, A., Timpl, R. &Schachner, M. (1985) The J1 glycoprotein- a novel nervous system cell adhesion molecule of the L2/HNK-1 family.Nature 316, 146–8.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • Laywell, E. D., Dörries, U., Bartsch, U., Faissner, A., Schachner, M. &Steindler, D. A. (1992) Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury.Proceedings of the National Academy of Sciences (USA) 89, 2634–8.

    Google Scholar 

  • Le Gal La Salle, G., Rougon, G. &Valin, A. (1992) The embryonic form of neural cell surface molecule (E-NCAM) in the rat hippocampus and its reexpression on glial cells following kainic acid-induced status epilepticus.Journal of Neuroscience 12, 872–82.

    PubMed  Google Scholar 

  • Letourneau, P. C., Condic, M. L. &Snow, D. M. (1994) Interactions of developing neurons with the extracellular matrix.Journal of Neurosdence 14, 915–28.

    Google Scholar 

  • Liuzzi, F. J. &Laser, R. J. (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway.Science 237, 642–5.

    PubMed  Google Scholar 

  • Lochter, A. &Schachner, M. (1993) Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growthin vitro.Journal of Neuroscience 13, 3986–4000.

    PubMed  Google Scholar 

  • Lochter, A., Vaughan, L., Kaplony, A., Prochiantz, A., Schachner, M. &Faissner, A. (1991) Tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth.Journal of Cell Biology 113, 1159–71.

    Google Scholar 

  • Mckeon, R. J., Schreiber, R. C., Rudge, J. S. &Silver, J. (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes.Journal of Neuroscience 11, 3398–411.

    Google Scholar 

  • Nadler, J. V. (1981) Kainic acid as a tool for the study of temporal lobe epilepsy.Life Science 29, 2031–42.

    Google Scholar 

  • Niquet, J., Jorquera, I., Faissner, A., Ben-Ari, Y. &Represa, A. (1994a) Degeneration and regeneration in the hippocampus of epileptic rats: tenascin expression by proliferating astrocytes. InFirst European Meeting on Glial Cell Function in Health and Disease. Heidelberg, March 24–27; p.143.

  • Niquet, J., Ben-Ari, Y. &Represa, A. (1994b) Glial reaction after seizure induced hippocampal lesion: immunohistochemical characterization of proliferating glial cells.Journal of Neurocytology 23, 641–56.

    PubMed  Google Scholar 

  • Niquet, J., Jorquera, I., Ben-Ari, Y. &Represa, A. (1994c) Proliferative astrocytes may express fibronectin-like protein in the hippocampus of epileptic rats.Neuroscience Letters 180, 13–16.

    PubMed  Google Scholar 

  • O'Brien, T. F., Faissner, A., Schachner, M., SteindLer, D. A. (1992) Afferent boundary interactions in the developing neostriatal mosaic.Developmental Brain Research 65, 259–67.

    PubMed  Google Scholar 

  • Pollard, H., Khrestchatisky, M., Moreau, J., Benari, Y. &Represa, A. (1994) Correlation between reactive sprouting and microtubule protein expression in epileptic hippocampus.Neurosccience 61, 773–87.

    Google Scholar 

  • Poltorak, M., Herranz, A. S., Williams, J., Lauretti, L., Freed, W. J. (1991) Effects of frontal cortical lesions on mouse striatum: reorganization of cell recognition molecule, glial fiber, and synaptic protein expression in the dorsal striatum.Journal of Neuroscience 13, 2217–29.

    Google Scholar 

  • Prieto, A. L., Jones, F. S., Cunningham, B. A., Crossin, K. L. &Edelman, G. M. (1990) Localization during development of alternatively spliced forms of cytotactin mRNA byin situ hybridization.Journal of Cell Biology 111, 685–98.

    PubMed  Google Scholar 

  • Racine, R. (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure.Electroencephalography and Clinical Neurophysiology 32, 281–96.

    PubMed  Google Scholar 

  • Reichardt, L. F. &Tomaselli, K. J. (1991) Extracellular matrix molecules and their receptors: functions in neural development.Annual Review of Neuroscience 14, 531–70.

    PubMed  Google Scholar 

  • Represa, A. &Ben-Ari, Y. (1992) Kindling in associated with the formation of novel mossy fiber synapses in the CA3 region.Experimental Brain Research 92, 69–78.

    Google Scholar 

  • Represa, A., Tremblay, E. &Ben-Ari, Y. (1987) Kainate binding sites in the hippocampal mossy fibers: localization and plasticity.Neuroscience 20, 739–48.

    PubMed  Google Scholar 

  • Represa, A., Le Gall La Salle, G. &Ben-Ari, Y. (1989) Hippocampal plasticity in the kindling model of epilepsy in rats.Neuroscience Letters 99, 345–50.

    PubMed  Google Scholar 

  • Represa, A., Jorquera, I., Le Gal La Salle, G. &Benari, Y. (1993a) Epilepsy induced collateral sprouting of hippocampal mossy fibers: does it induce the development of ectopic synapses with granule cell dendrites?Hippocampus 3, 257–68.

    Google Scholar 

  • Represa, A., Niquet, J., Charriaut-Marlangue, C. &Ben-Ari, Y. (1993b) Reactive astrocytes in the KA damaged hippocampus have the phenotypic features of type-2 astrocytes.Journal of Neurocytology 22, 299–310.

    Google Scholar 

  • Ritishauser, D. E. &Jessel, T. M. (1968) Cell adhesion molecules in vertebrate neural development.Physiological Reviews 68, 819–57.

    Google Scholar 

  • Saga, Y., Tsukamoto, T., Jing, N., Kusakabe, M. &Sakakura, T. (1991) Murine tenascin: cDNA cloning, structure and temporal expression of isoforms.Gene 104, 177–85.

    PubMed  Google Scholar 

  • Steindler, D. A., Cooper, N. G. F., Faissner, A. &Schachner, M. (1989) Boundaries defined by adhesion molecules during development of the cerebral cortex: the J1/tenascin glycoprotein in the mouse somatosensory cortical barrel field.Developmental Biology 131, 243–60.

    PubMed  Google Scholar 

  • Steindler, D. A., O'brien, T. F., Laywell, E., Harrington, K., Faissner, A. &Schachner, M. (1990) Boundaries during normal and abnormal brain development:in vivo andin vitro studies of glia and glycoconjugates.Experimental Neurology 109, 35–56.

    PubMed  Google Scholar 

  • Sutula, T., Xiao-Xian, H., Cavazos, J. &Scott, G. (1988) Synaptic reorganization in the hippocampus induced by abnormal functional activity.Science 239, 1147–50.

    PubMed  Google Scholar 

  • Tan, S.-S., Crossin, K. L., Hoffman, S. &Edelman, G. M. (1987) Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest cell distribution.Proceedings of the National Academy of Sciences (USA) 84, 7977–81.

    Google Scholar 

  • Tauck, D. L. &Nadler, J. V. (1985) Evidence for functional mossy fiber sprouting in hippocampal formation of kainic acid treated rats.Journal of Neuroscience 5, 1016–22.

    PubMed  Google Scholar 

  • Towbin, H. T., Staehelin, T. &Gordon, S. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets.Proceedings of the National Academy of Sciences (USA) 76, 4350–4.

    Google Scholar 

  • Tucker, R. P. (1991) The distribution of tenascin and its transcript in the developing avian central nervous system.Journal of Experimental Zoology 259, 78–91.

    Google Scholar 

  • Wintergerst, E. -S., Fuss, B. &Bartsch, U. (1993) Localization of janusin mRNA in the central nervous system of the developing and adult mouse.European Journal of Neuroscience 5, 299–310.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niquet, J., Jorquera, I., Faissner, A. et al. Gliosis and axonal sprouting in the hippocampus of epileptic rats are associated with an increase of tenascin-C immunoreactivity. J Neurocytol 24, 611–624 (1995). https://doi.org/10.1007/BF01257376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257376

Keywords

Navigation