Skip to main content
Log in

The effects of benzodiazepine and non-benzodiazepine anxiolytics on locus coeruleus unit activity

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Two theories have been put forth concerning the anxiolytic actions of the anti-anxiety drugs. One theory maintains that these drugs decrease locus coeruleus output, and the other maintains that they facilitate gammaaminobutyric acid (GABA) neurotransmission at benzodiazepine (BZ)-linked GABA receptors. The BZ-anxiolytic diazepam does decrease locus coeruleus neuronal impulse flow. However, this decrease is not due to effects on BZ-linked GABA receptors in the locus coeruleus. Furthermore, the non-BZ anxiolytic buspirone, its metabolite and its analog all slightly increase locus coeruleus neuronal impulse flow. This increase, in the case of the metabolite, appears to be due, in part, to blockade ofα 2-adrenoceptors. Finally, buspirone, unlike diazepam, did not potentiate GABA inhibition at BZ-linked GABA receptor sites (i.e. cerebellar Purkinje cells). These data suggest that the non-BZ anxiolytic buspirone produces its anti-anxiety effects by unconventional mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braestrup, C., Albrechtsen, R., Squires, R. F.: High densities of benzodiazepine receptors in human cortical areas. Nature269, 702–704 (1977).

    Google Scholar 

  • Caccia, S., Garattini, S., Mancinelli, A., Muglia, M.: Identification and quantitation of 1-(2-pyrimidinyl) piperazine, an active metabolite of the anxiolytic agent buspirone, in rat plasma and brain. J. Chromat.252, 310–314 (1982).

    Google Scholar 

  • Cedarbaum, J. M., Aghajanian, G. K.: Catecholamine receptors on locus coeruleus neurons: pharmacological characterization. Eur. J. Pharmacol.44, 375–385 (1977).

    Google Scholar 

  • Cedarbaum, J. M., Aghajanian, G. K.: Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci.23, 1383–1392 (1978).

    Google Scholar 

  • Costa, E., Guidotti, A., Mao, C.: Evidence for the involvement of GABA in the action of benzodiazepines: Studies in rat cerebellum. In: Advances in Biochemical Psychopharmacology (Costa, E., Greengard, P., eds.), pp. 113–130. Raven Press. 1975 a.

  • Costa, E., Guidotti, A., Mao, C. C., Suria, A.: New concepts on the mechanism of action of benzodiazepines. Life Sci.17, 167–186 (1975 b).

    Google Scholar 

  • Eccles, J. C., Ito, M., Szentagothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer. 1967.

    Google Scholar 

  • Eison, M. S., Taylor, D. P., Riblet, L. M., New J. S., Temple, D. L., Yevich J. P.: MJ-13805-1: A potential non-benzodiazepine anxiolytic. Neurosci. Abstr.470 (1982).

  • Garattini, S., Caccia, S., Mennini, T.: Notes on Buspirone's mechanism of action. J. Clin. Psychiat.43, 12 (2) 19–22 (1982).

    Google Scholar 

  • German, D. C., Sanghera, M. K., Kiser, R. S., McMillen, B. A., Shore, P. A.: Electrophysiological and biochemical responses of noradrenergic neurons to a nonamphetamine CNS stimulant. Brain Res.166, 331–339 (1979).

    Google Scholar 

  • Gold, M. S., Redmond, D. E., Kleber, H. D.: Clonidine blocks acute opiatewithdrawal symptoms. Lancet1978, 599–601.

  • Grant, S. J., Huang, Y. H., Redmond, D. E.: Benzodiazepines attenuate single unit activity in the locus coeruleus. Life Sci.27, 2231–2236 (1980).

    Google Scholar 

  • Guidotti, A.: Interaction between benzodiazepines and GABA receptors: A base for the therapeutic action of benzodiazepines. In: Neuroreceptors-Basic and Clinical Aspects (Usdin, E., Bunney, W. E., Davis, J. M., eds.), pp. 189–197. J.Wiley. 1981.

  • Haefely, W., Kulscar, A., Mohler, H., Pieri, L., Polc, P., Schaffner, R.: Possible involvement of GABA in the central actions of benzodiazepines. In: Advances in Biochemical Psychopharmacology (Costa, E., Greengard, P., eds.), Vol. 12, pp.131–151. Raven Press. 1975.

  • Haefely, W., Polc, P., Pieri, L., Schaffner, R.: Effects of benzodiazepines on the electrical activity of the central nervous system: corelation with synaptic pharmacology. In: Neuro-Psychopharmacology (Saletu, B., Berner, B., Hollister, L., eds.), pp. 449–458. Pergamon Press. 1979 a.

  • Haefely, W., Polc, P., Schaffner, R., Keller, H. H., Pieri, L., Mohler, H.: Facilitation of GABAergic transmission by drugs. In: GABA-neurotransmitters: Pharmaco-chemical, Biochemical and Pharmacological Aspects (Krogsgaarol-Larsen, P., Scheel-Keuger, J., Kofod, H., eds.), pp. 357–375. Munksgaard. 1979 b.

  • Hoehn-Saric, R., Merchant, A. F., Keyser, M. L., Smith, V. K.: Effects of clonidine on anxiety disorders. Arch. Gen. Psychiat.38, 1278–1282 (1981).

    Google Scholar 

  • Iversen, L. L., Schon, F.: The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurons in the CNS. In: New Concepts of Transmitter Regulation (Mandell, A., Segal, D., eds.), pp. 153–193. Plenum Press. 1973.

  • Leeb-Lundberg, F., Snowman, A., Olsen, R.: Barbiturate receptor sites are coupled to benzodiazepine receptors. Proc. Natl. Acad. Sci. U.S.A.77, 7468–7472 (1980).

    Google Scholar 

  • Mao, C. C., Guidotti, A., Costa, E.: Evidence for an involvement of GABA in the mediation of the cerebellar cGMP decrease and the anticonvulsant action of diazepam. Naunyn-Schmiedeberg's Arch. Pharmacol.289, 369–378 (1975).

    Google Scholar 

  • McMillen, B. A., Matthews, R. T., Sanghera, M. K., Shepard, P. D., German, D. C.: Dopamine receptor antagonism by the novel anti-anxiety drug, buspirone. J. Neurosci.3, 733–738 (1983).

    Google Scholar 

  • Paul, S., Marangos, P., Skolnick, P.: The benzodiazepines-GABA-chloride-ionophore receptor complex: common site of minor tranquilizer action. Bio. Psychiat.16, 213–229 (1981).

    Google Scholar 

  • Paul, S. M., Skolnick, P.: Comparative neuropharmacology of antianxiety drugs. Pharmacol. Biochem. & Behav.17, Suppl. 1, 37–41 (1982).

    Google Scholar 

  • Redmond, D. E.: Alteration in the function of the nucleus locus coeruleus: a possible model for studies of anxiety. In: Animal Models in Psychiatry and Neurology (Hanin, I., Usdin, E., eds.), pp. 293–304. Pergamon Press. 1977.

  • Redmond, D. E., Huang, Y. H.: New evidence for a locus coeruleus norepinephrine connection with anxiety. Life Sci.25, 2149–2162 (1979).

    Google Scholar 

  • Redmond, D. E., Huang, Y. H., Synder, D. R., Maas J. W.: Behavioral effects of stimulation of the nucleus locus coeruleus in the stump-tailed monkey Macaca arctoides. Brain Res.116, 502–510 (1976 a).

    Google Scholar 

  • Redmond, D. E., Huang, Y. H., Synder, D. R., Baulu, J., Maas, J. W.: Behavioral changes following lesions of the locus coeruleus in Macaca Arctoides. Neurosci. Abstr.1976b, 668.

  • Riblet, L. A., Taylor, D. P., Eison, M. S., Stanton, H. C.: Pharmacology and Neurochemistry of Buspirone. J. Clin. Psychiat.43, 12 (2), 11–16 (1982).

    Google Scholar 

  • Sanghera, M. K., McMillen, B. A., German, D. C.: Buspirone, a non-benzodia-zepine anxiolytic, increase locus coeruleus noradrenergic neuronal activity. Eur. J. Pharmacol.86, 107–110 (1982).

    Google Scholar 

  • Skolnick, P., Paul, S., Barker, J.: Pentobarbital potentiates GABA-enhanced (3H) diazepam binding to benzodiazepine receptors. Eur. J. Pharmacol.65, 125–127 (1980).

    Google Scholar 

  • Skolnick, P., Rice, K., Barker, J., Paul, S.: Interaction of barbiturates with benzodiazepine receptors in the central nervous system. Brain Res.233, 143–156 (1982).

    Google Scholar 

  • Stanton, H. C., Taylor, D. P., Riblet, L. A.: Buspirone-An anxioselective drug with dopaminergic action. In: The Neurobiology of the Nucleus Accumbens (Chronister, R. B., DeFrance, J. F., eds.), pp. 316–321. 1981.

  • Supavilai, P., Karobath, M.: The effects of temperature and chloride ions on the stimulation of (3H) flunitrazepam binding by the muscimol analogues THIP and piperdine-4-sulfonic acid. Neurosci. Lett.19, 337–341 (1980).

    Google Scholar 

  • Tallman J., Thomas, J., Gallager, D.: GABAergic modulation of benzodiazepine binding site sensitivity. Nature274, 383–385 (1978).

    Google Scholar 

  • Tollman, J., Paul, P., Skolnick, P., Gallager, D.: Receptors for the age of anxiety: molecular pharmacology of the benzodiazepines. Science207, 274–281 (1980).

    Google Scholar 

  • Tasaki, K., Tsukakaro, U., Ito, S., Wayner, M. J., Yu, W. Y.: A simple direct and rapid method for filling microelectrodes. Physiol. Behav.3, 1009–1011 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanghera, M.K., German, D.C. The effects of benzodiazepine and non-benzodiazepine anxiolytics on locus coeruleus unit activity. J. Neural Transmission 57, 267–279 (1983). https://doi.org/10.1007/BF01248998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248998

Keywords

Navigation