Skip to main content
Log in

Species differences in behavioural effects of rolipram and other adenosine cyclic 3h, 5h-monophosphate phosphodiesterase inhibitors

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The effect of the phosphodiesterase (PDE) inhibitors rolipram, Ro 20-1724 and isobutylmethylxanthine (IBMX) on motor behaviour and rectal temperature was studied in mice, rats and guinea pigs following intraperitoneal administration (0.39 to 25 mg/kg). The selective adenosine cyclic 3′, 5′-monophosphate (cAMP) PDE inhibitors rolipram and Ro 20-1724 in each species caused a dissimilar pattern of neurotropic effects: Hypothermia andhypokinesia in mice, hypothermia,hypokinesia and head twitches in rats, hypothermia,hyperkinesia and head twitches in guinea pigs. The head twitches were associated with forepaw shaking and increased grooming. Rolipram was the most potent compound in the three species. In guinea pigs it was less active than in rats or mice. Ro 20-1724 was approx. 15 to 30 times less potent in inducing the characteristic alterations in the various species. The alkylxanthine PDE inhibitor IBMX, 0.39 to 6.25 mg/kg, slightly stimulated the locomotor activity of mice and rats, most probably due to antagonism of central adenosine actions. IBMX, 6.25 to 25 mg/kg, caused a pattern of neurotropic effects identical to that produced by the selective cAMP PDE inhibitors, indicating the prevalence of the cAMP PDE inhibitory action over the adenosine antagonistic action at higher dosages. IBMX was approx. as potent as Ro 20-1724 in this respect. The species differences in the neurotropic responses to cAMP PDE inhibitionin vivo presumably reflect similar differences in the extent of cAMP accumulation in brain tissue of the three speciesin vitro. Enhanced availability of brain cAMPin vivo in the various rodent species seems to be correlated with diverse patterns of more or less complex motor behavioural symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beer, B., Chasin, M., Clody, D. E., Vogel, J. R., Horovitz, Z. P.: Cyclic adenosine monophosphate phosphodiesterase in brain: Effect on anxiety. Science176, 428–430 (1972).

    Google Scholar 

  • Burnstock, G.: Purinergic transmission. In: Handbook of Psychopharmacology, Vol. 5 (Iversen, L. L., Iversen, S. D., Snyder, S. H., eds.), pp. 131–194. New York-London: Plenum. 1975.

    Google Scholar 

  • Butt, N. M., Collier, H. O. J., Cuthbert, N. J., Francis, D. L., Saeed, S. A.: Mechanism of quasi-morphine withdrawal behaviour induced by methylxanthines. Eur. J. Pharmacol.53, 375–378 (1979).

    Google Scholar 

  • Collier, H. O. J.: The concept of quasi-abstinence effect and its use in the investigation of dependence mechanisms. Pharmacology11, 58–61 (1974).

    Google Scholar 

  • Collier, H. O. J., Francis, D. L.: Morphine abstinence is associated with increased brain cyclic AMP. Nature255, 159–162 (1975).

    Google Scholar 

  • Collier, H. O. J., Cuthbert, N. J., Francis, D. L.: Character and meaning of quasi-morphine withdrawal phenomena elicited by methylxanthines. Fed. Proc.40, 1513–1518 (1981).

    Google Scholar 

  • Collier, H. O. J., Butt, N. M., Saeed, S. A.: Endogenous peptides that inhibit brain cyclic AMP phosphodiesterase. J. Neurochem.38, 275–277 (1982).

    Google Scholar 

  • Daly, J. W.: Cyclic Nucleotides in the Nervous System. New York-London: Plenum. 1977.

    Google Scholar 

  • Dascombe, M. J., Milton, A. S., Nyemitei-Addo, I., Pertwee, R. G.: Thermoregulatory effects of N6-2′-O-dibutyryl adenosine 3′, 5′-monophosphate in the restrained mouse. Br. J. Pharmacol.70, 453–459 (1980).

    Google Scholar 

  • Dascombe, M. J., Parkes, J.: Effects of N6-2′-O-dibutyryl adenosine 3′, 5′-monophosphate on body temperature in the restraint rat. Br. J. Pharmacol.72, 565–566 (1981).

    Google Scholar 

  • Francis, D. L., Roy, A. C., Collier, H. O. J.: Morphine abstinence and quasi-abstinence effects after phosphodiesterase inhibitors and naloxone. Life Sci.16, 1901–1906 (1975).

    Google Scholar 

  • Henion, W. F., Sutherland, E. W., Posternak, T.: Effects of derivatives of adenosine 3′, 5′-phosphate on liver slices and intact animals. Biochem. Biophys. Acta148, 106–113 (1967).

    Google Scholar 

  • Huang, M., Shimizu, H., Daly, J. W.: Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effect of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J. Med. Chem.15, 462–466 (1972).

    Google Scholar 

  • Jacobs, B. L.: An animal behaviour model for studying central serotonergic synapses. Life Sci.19, 777–786 (1976).

    Google Scholar 

  • Kant, G. J., Meyerhoff, J. L., Lenox, R. H.:In vivo effects of apomorphine and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724) on cyclic nucleotides in rat brain and pituitary. Biochem. Pharmacol.29, 369–373 (1980).

    Google Scholar 

  • Krishna, G., Forn, J., Voigt, M., Gessa, G. L.: Dynamic aspects of neurohormonal control of cyclic 3′, 5′-AMP synthesis in brain. Adv. Biochem. Psychopharmacol.3, 155–172 (1970).

    Google Scholar 

  • Kuo, J. F., Miyamoto, E., Reyes, P. L.: Activation and dissociation of adenosine 3′, 5′-monophosphate-dependent and guanosine 3′, 5′-monophosphate-dependent protein kinases by various cyclic nucleotide analogs. Biochem. Pharmacol.23, 2011–2021 (1974).

    Google Scholar 

  • Minneman, K. P.: Cyclic nucleotide phosphodiesterase in rat neostriatum: Multiple isoelectric forms with similar kinetic properties. J. Neurochem.27, 1181–1189 (1976).

    Google Scholar 

  • Prémont, J., Perez, M., Bockaert J.: Adenosine-sensitive adenylate cyclase in rat striatal homogenates and its relationship to dopamine- and Ca2+-sensitive adenylate cyclase. Mol. Pharmacol.13, 662–670 (1977).

    Google Scholar 

  • Przegalinski, E., Bigajska, K., Lewandowska, A.: The influence of rolipram on the central serotoninergic system. Pharmacopsychiatry14, 162–166 (1981).

    Google Scholar 

  • Sattin, A.: Cyclic AMP accumulation in cerebral cortex tissue from inbred strains of mice. Life Sci.16, 903–914 (1975).

    Google Scholar 

  • Schneider, H. H., Prozesky, K. D.: Focussed microwave power for rapid enzyme inactivation in rat brain. Abstr., 7th Meeting of the International Society of Neurochemistry, Jerusalem, p. 573 (1979).

  • Schwabe, U., Miyake, M., Ohga, Y., Daly, W.: 4-(3-cyclopentyloxy-4-methoxy)-2-pyrrolidone (ZK62 711): A potent inhibitor of adenosine cyclic 3′, 5′-monophosphate phosphodiesterases in homogenates and tissue slices from rat brain. Mol. Pharmacol.12, 900–910 (1976).

    Google Scholar 

  • Skolnick, P., Daly, J. W.: Norepinephrine-sensitive adenylate cyclases in rat brain: Relation to behavior and tyrosine hydroxylase. Science184, 175–177 (1974).

    Google Scholar 

  • Smellie, F. W., Davis, C. W., Daly, J. W., Wells, J. N.: Alkylxanthines: Inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci.24, 2475–2482 (1979).

    Google Scholar 

  • Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., Daly, J. W.: Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. U.S.A.78, 3260–3264 (1981).

    Google Scholar 

  • Sprügel, W., Mitznegg, P., Heim, F.: The influence of caffeine and theobromine on locomotive activity and brain cGMP/cAMP ratio in white mice. Biochem. Pharmacol.26, 1721–1724 (1977).

    Google Scholar 

  • Stalvey, L., Daly, J. W., Dismukes, R. K.: Behavioral activity and accumulation of cyclic AMP in brain slices of mice. Life Sci.19, 1845–1850 (1976).

    Google Scholar 

  • Wachtel, H.: Effects of different phosphodiesterase (PDE) inhibitors and cyclic nucleotides on motor behaviour and body temperature in rats. Abstr., 11th Congress of the Collegium Internationale Neuropsychopharmacologicum, Vienna, p. 428 (1978).

  • Wachtel, H.: Rolipram—A compilation of the animal experimental pharmacodynamics, pharmacokinetics and toxicology and of the pharmacokinetics and tolerance in the human. Product information for clinical investigators. Schering Research Report (1979).

  • Wachtel, H., Paschelke, G., Erhard, C.: Neuroleptic-like activity of rolipram, a novel pyrrolidone derivative, in mice. Naunyn-Schmiedeberg's Arch. Pharmacol.308 (Suppl.), R44 (1979).

    Google Scholar 

  • Wachtel, H., Schmiechen, R., Zehleke, P.: Induction of a characteristic behavioural syndrome in rats by rolipram and other selective adenosine cyclic 3′, 5′-monophosphate (cAMP) phosphodiesterase (PDE) inhibitors. Naunyn-Schmiedeberg's Arch. Pharmacol.313 (Suppl.), R30 (1980).

    Google Scholar 

  • Wachtel, H.: Characteristic behavioral alterations in rats induced by rolipram and other selective adenosine cyclic 3′, 5′-monophosphate phosphodiesterase inhibitors. Psychopharmacology77, 309–316 (1982).

    Google Scholar 

  • Weiner, M., Olson, J. W.: Behavioral effects of dibutyryl cyclic AMP in mice. Life Sci.12, 345–356 (1973).

    Google Scholar 

  • Weiss, B., Costa, E.: Regional and subcellular distribution of adenyl cyclase and 3′, 5′-cyclic nucleotide phosphodiesterase in brain and pineal gland. Biochem. Pharmacol.17, 2107–2116 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachtel, H. Species differences in behavioural effects of rolipram and other adenosine cyclic 3h, 5h-monophosphate phosphodiesterase inhibitors. J. Neural Transmission 56, 139–152 (1983). https://doi.org/10.1007/BF01243273

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243273

Key words

Navigation