Skip to main content
Log in

Ocular artifacts in EEG and event-related potentials I: Scalp topography

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

The ocular artifacts that contaminate the EEG derive from the potential difference between the cornea and the fundus of the eye. This corneofundal or corneoretinal potential can be considered as an equivalent dipole with its positive pole directed toward the cornea. The cornea shows a steady DC potential of approximately +13 mV relative to the forehead. Blink potentials are caused by the eyelids sliding down over the positively charged cornea. The artifacts from eye-movements result from changes in orientation of the corneo-fundal potential. The scalp-distribution of the ocular artifacts can be described in terms of propagation factors — the fraction of the EOG signal at periocular electrodes that is recorded at a particular scalp location. These factors vary with the location of the scalp electrode. Propagation factors for blinks and upward eye-movements are significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antervo, A., Hari, R., Katilla, T., Ryhänen, T. and Seppänen, M. Magnetic fields produced by eye blinking. Electroencephalogr. Clin. Neurophysiol., 1985, 61: 247–253.

    PubMed  Google Scholar 

  • Arden, G.B., Barrada, A. and Kelsey, J.H. New clinical test of retinal function based upon the standing potentials of the eye. Brit. J. Ophthal., 1962, 46: 449–467.

    Google Scholar 

  • Arden, G.B. and Kelsey, J.H. Changes produced by light in the standing potential of the human eye. J. Physiol., 1962, 161: 189–204.

    Google Scholar 

  • Barber, H.O. and Stockwell, C.W. Manual of electronystagmography. CV Mosby, St Louis, 1980.

    Google Scholar 

  • Barry, W. and Jones G.M. Influence of eye lid movement upon electro-oculographic recording of vertical eye movements. Aerosp. Med., 1965, 36: 855–858.

    PubMed  Google Scholar 

  • Becker, W. and Fuchs, A.F. Lid-eye coordination during vertical gaze changes in man and monkey. J. Neurophysiol., 1988, 60: 1227–1252.

    PubMed  Google Scholar 

  • Berg, P. and Davies, M.B. Eyeblink-related potentials. Electroencephalogr. Clin. Neurophysiol., 1988, 69: 1–5.

    PubMed  Google Scholar 

  • Berg, P. and Scherg, M. Dipole models of eye movements and blinks. Electroencephalogr. Clin. Neurophysiol., 1991, 79: 36–44.

    PubMed  Google Scholar 

  • Berson, E.L. Electrical phenomena in the retina. In: R.A. Moses and W.M. Hart (Eds.), Adler's Physiology of the Eye. Clinical Application. Eighth Edition. Mosby, Toronto, 1987: 507–567.

    Google Scholar 

  • Blinn, K.A. Focal and anterior temporal spikes from external rectus muscle. Electroencephalogr. Clin. Neurophysiol., 1955, 7: 299–302.

    Google Scholar 

  • Brindley, G.S. Resting potential of the lens. Brit. J. Ophthal., 1956, 40: 385–391.

    PubMed  Google Scholar 

  • Coats, A.C. Electronystagmography. In: L.J. Bradford (Ed.), Physiological Measures of the Audio-Vestibular System. Academic Press, New York, 1975: 37–85.

    Google Scholar 

  • Collewijn, H., Van Der Steen, J. and Steinman, R.M. Human eye movements associated with blinks and prolonged eyelid closure. J. Neurophysiol., 1985, 54: 11–27.

    PubMed  Google Scholar 

  • Corby, J.C., Bert, S. and Kopell, B.S. Differential contributions of blinks and vertical eye movement as artifacts in EEG recording. Psychophysiol., 1972, 9: 640–644.

    Google Scholar 

  • Davson, H. Physiology of the eye (fifth edition). Macmillan, London, 1990: 660–661.

    Google Scholar 

  • Doane, M.G. Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am. J. Ophthalmol., 1980, 89: 507–516.

    PubMed  Google Scholar 

  • Donn, A., Maurice, D.M. and Mill, N.L. Studies on the living cornea in vitro. Arch. Ophthalm., 1959, 62: 741–747.

    Google Scholar 

  • Du Bois Reymond, E. Untersuchungen über tierische Elektrizität. Reimer, 1849, 2: (1) 256.

    Google Scholar 

  • Elbert, T., Lutzenberger, W., Rockstroh, B. and Birbaumer, N. Removal of the ocular artifacts from the EEG-A biophysical approach to the EOG. Electroencephalogr. Clin. Neurophysiol., 1985, 60: 455–463.

    PubMed  Google Scholar 

  • Evinger, M.D., Shaw, C.K., Manning, K.A. and Baker, R. Blinking and associated eye movement in humans, guinea pigs and rabbits. J. Neurophysiol., 1984, 52: 323–38.

    PubMed  Google Scholar 

  • Fisch, B.J. Spehlmann's EEG primer. Elsevier, New York, 1991.

    Google Scholar 

  • Geddes, L.A. Electrodes and the measurement of bioelectric events. Wiley, New York, 1972: 102.

    Google Scholar 

  • Geddes, L.A. and Baker, L.E. Principles of applied biomedical instrumentation. Third Edition. Wiley, New York, 1989: 760–767.

    Google Scholar 

  • Granit, R. Sensory mechanisms of the retina. Oxford University Press, London, 1947.

    Google Scholar 

  • Gratton, G., Coles, M.G.H. and Donchin, E. A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol., 1983, 55: 468–484.

    PubMed  Google Scholar 

  • Hillyard, S.A. and Galambos, R. Eye movement artifact in the CNV. Electroencephalogr. Clin. Neurophysiol., 1970, 28: 173–182.

    Google Scholar 

  • Kiloh, L.G., McComas, A.J., Osselton, J.W. and Upton, A.R.M. Clin, electroencephalography. Butterworths, London, 1981.

    Google Scholar 

  • Krogh, E. Normal values in clinical electrooculography. II. Analysis of potential and time parameters and their relation to other variables. Acta Opthal, 1976, 54: 389–400.

    Google Scholar 

  • Kurtzberg, D. and Vaughan, H.G. Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades. Brain Res., 1982, 243: 1–9.

    PubMed  Google Scholar 

  • Lasansky, A. and de Fisch, F.W. Potential, current and ionic fluxes across the isolated retinal pigment epithelium and choroid. J. Gen. Physiol., 1966, 49: 913–24.

    PubMed  Google Scholar 

  • Lins, O.G. Ocular artifacts in recording EEGs and event-related potentials. M.Sc. Thesis. University of Ottawa, 1993.

  • Marg, E. Development of electro-oculography. Arch. Ophthalmol., 1951, 45: 169–185.

    Google Scholar 

  • Marton, M., Szirtes, J., Donauer, N. and Breuer, P. Saccade-related brain potentials in semantic categorization tasks. Biol. Psych., 1985, 20: 163–184.

    Google Scholar 

  • Matsuo, F., Peters, J.F. and Reilly, E.L. Electrical phenomena associated with movements of the eyelid. Electroncephalogr. Clin. Neurophysiol., 1975, 38: 507–511.

    Google Scholar 

  • McCloskey, D.I. Corollary discharges: motor commands and perception. In: V.B. Brooks (Ed.), Handbook of Physiology. Secton 1: The Nervous System. Volume II. Motor Control, Part 2. Maryland, Bethesda, American Physiology Society, 1981, 1415–1447.

    Google Scholar 

  • Mowrer, O.H., Ruch, T.C. and Miller, N.E. The corneo-retinal potential difference as the basis of the galvanometric method of recording eye movements. Am J. Physiol., 1936, 114: 423–428.

    Google Scholar 

  • Müller-Limmroth, H. and Lamaître, M. Über das Bestandpotential des Auges und seine Beziehungen zum Elektroretinogramm. Z. Biol., 1953, 105: 348–362.

    Google Scholar 

  • Pasik, P., Pasik, T. and Bender, M.B. Recovery of the electro-oculogram after total ablation of the retina in monkeys. Electroencephalogr. Clin. Neurophysiol., 1965, 19: 291–297.

    PubMed  Google Scholar 

  • Picton, T.W. The recording and measurement of evoked potentials. In: A.M. Halliday, S.R. Butler and R. Paul (Eds.), Textbook of clinical neurophysiology. Wiley, Chichester, 1987: 23–40.

    Google Scholar 

  • Picton, T.W. and Hillyard, S.A. Cephalic skin potentials in electroencephalography. Electroencephalogr. Clin. Neurophysiol, 1972, 33: 419–424.

    PubMed  Google Scholar 

  • Semlitsch, H.V., Anderer, P., Schuster, P. and Presslich, O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiol., 1986, 23: 965–703.

    Google Scholar 

  • Steinberg, R.H., Linsenmeier, R.A. and Griff, E.R. Three light-evoked responses of the retinal pigment epithelium. Vision Res., 1983, 23: 1315–1323.

    PubMed  Google Scholar 

  • Stephenson, S.A. and Gibbs, F.A. A balanced noncephalic reference electrode. Electroencephalogr. Clin. Neurophysiol., 1951, 3: 237–240.

    PubMed  Google Scholar 

  • Wilkins, R.H. and Brody, I.A. Bell's palsy and Bell's phenomenon. Arch. Neurol., 1969, 21: 661–662.

    PubMed  Google Scholar 

  • Yagi, A. Visual signal detection and lambda responses. Electroencephalogr. Clin. Neurophysiol., 1981, 52: 604–610.

    PubMed  Google Scholar 

  • Zao, Z.Z., Gelbin, J. and Rémond, A. Le champ électrique de l'oiel. Sem. Hôp. Paris, 1952, 36: 1506–1513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the Medical Research Council of Canada (MA5465). Adrian Kellett helped with technical aspects of the recording.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lins, O.G., Picton, T.W., Berg, P. et al. Ocular artifacts in EEG and event-related potentials I: Scalp topography. Brain Topogr 6, 51–63 (1993). https://doi.org/10.1007/BF01234127

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234127

Key words

Navigation