Skip to main content
Log in

Confocal microscopy of genome exposure in normal, cancer, and reverse-transformed cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Genome exposure studies were carried out on malignant CHO-K1 and C6 rat glioma cells and their respective, phenotypically normal counterparts (reverse-transformed CHO-K1, and both reverse-transformed C6 glioma and normal rat fibroblasts). Cells were subjected to the nick-translation technique previously developed to make visible the exposed (i.e., DNase I-sensitive) nuclear DNA, and examined by both epifluorescence and confocal microscopy. The confocal microscopy, by permitting examination of sections throughout the nucleus, made possible clearer identification of the regions of exposed and sequestered DNA in the cells studied. A peripheral shell of exposed DNA with some discontinuities was displayed in the great majority of the cells with normal phenotype, but in none of the cancer cells. Both types of cells displayed regions of exposed DNA in the nuclear interior, particularly surrounding the nucleoli. In accordance with previous theoretical proposals we postulate: the peripheral nuclear shell of exposed DNA contains differentiation-specific genes that include the specific growth-control genes and that are functional in normal cells but not in cancer; the exposed genes surrounding the nucleoli may represent housekeeping genes active in both normal and cancer cells; and the DNase I-resistant DNA in the interior of the nucleus we postulate to consist for the most part of genes specific to alternative differentiation states and to be sequestered and inactive. Previous differences in evaluation of roles of peripheral and internal DNA sensitivity to DNase I hydrolysis appear to be reconciled by this formulation. Identification of exposed DNA may be useful in cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Hsie, A.W., and Puck, T.T.Proc. Natl. Acad. Sci. U.S.A. (1971).Proc. Natl. Acad. Sci. U.S.A. 68358–361.

    Google Scholar 

  2. Puck, T.T. (1977).Proc. Natl. Acad. Sci. U.S.A. 744491–4495.

    Google Scholar 

  3. Puck, T.T. (1984).Adv. Viral Oncol. 4197–216.

    Google Scholar 

  4. Schonberg, S., Patterson, D., and Puck, T.T. (1983).Exp. Cell Res. 14557–62.

    Google Scholar 

  5. Ashall, F., and Puck, T.T. (1984).Proc. Natl. Acad. Sci. U.S.A. 815145–5149.

    Google Scholar 

  6. Puck, T.T., Krystosek, A., and Chan, D. (1990).Somat. Cell Mol. Genet. 16257–265.

    Google Scholar 

  7. Puck, T.T., and Krystosek, A. (1992).Int. Rev. Cytol. (in press).

  8. Ashall, F., Sullivan, N., and Puck, T.T. (1988).Proc. Natl. Acad. Sci. U.S.A. 853908–3912.

    Google Scholar 

  9. Krystosek, A., and Puck, T.T. (1990).Proc. Natl. Acad. Sci. U.S.A. 876560–6564.

    Google Scholar 

  10. Hutchison, N., and Weintraub, H. (1985).Cell 43471–482.

    Google Scholar 

  11. Manuelidis, L., and Borden, J. (1988).Chromosoma 96397–410.

    Google Scholar 

  12. Tjio, J.H., and Puck, T.T. (1958).J. Exp. Med. 108259–268.

    Google Scholar 

  13. Hsie, A.W., Jones, C., and Puck, T.T. (1971).Proc. Natl. Acad. Sci. U.S.A. 681648–1652.

    Google Scholar 

  14. Benda, P., Lightbody, L., Sato, G., Levine, L. and Sweet, W. (1968).Science 161370.

    Google Scholar 

  15. Topp, W.C. (1981).Virology 113408–411.

    Google Scholar 

  16. White, J.G., Amos, W.B., and Fordam, M. (1987).J. Cell Biol. 10541–48.

    Google Scholar 

  17. Shotton, D.M. (1989).J. Cell Sci. 94175–206.

    Google Scholar 

  18. Krystosek, A., and Puck, T.T. (1989).J. Cell Biol. 109:231a.

    Google Scholar 

  19. Gerace, L., and Blobel, G. (1980).Cell 19277–287.

    Google Scholar 

  20. Paddy, M.R., Belmont, A.S., Saumweber, H., Agard, D.A., and Sedat, J.W. (1990).Cell 6289–106.

    Google Scholar 

  21. Garel, A., and Axel, R. (1976).Proc. Natl. Acad. Sci. U.S.A. 733966–3970.

    Google Scholar 

  22. Clark, R.F., Cho, K.W.Y., Weinmann, R., and Hamkalo, B.A. (1991).Gene Express. 161–70.

    Google Scholar 

  23. Spector, D.L. (1990).Proc. Natl. Acad. Sci. U.S.A. 87147–151.

    Google Scholar 

  24. Blobel, G. (1985).Proc. Natl. Acad. Sci. U.S.A. 828527–8529.

    Google Scholar 

  25. de Graaf, A., van Hemert, F., Linnemans, W.A.M., Brakenhoff, G.J., de Jong, L., van Renswoude, J., and van Driel, R. (1990).Eur. J. Cell Biol. 52135–141.

    Google Scholar 

  26. Mummery, C.L., Feijen, A., van der Saag, P.T., van den Brink, C.E., and de Laat, S.W. (1985).Dev. Biol. 109402–410.

    Google Scholar 

  27. White, E., and Cipriani, R. (1989).Proc. Natl. Acad. Sci. U.S.A. 869886–9890.

    Google Scholar 

  28. White, E., and Cipriani, R. (1990).Mol. Cell. Biol. 10120–130.

    Google Scholar 

  29. Chou, C.C., Davis, R.C., Fuller, M.L., Slovin, J.P., Wong, A., Wright, J., Kania, S., Shaked, R., Gatti, R.A., and Salser, W.A. (1987).Proc. Natl. Acad. Sci. U.S.A. 842575–2579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puck, T.T., Bartholdi, M., Krystosek, A. et al. Confocal microscopy of genome exposure in normal, cancer, and reverse-transformed cells. Somat Cell Mol Genet 17, 489–503 (1991). https://doi.org/10.1007/BF01233173

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233173

Keywords

Navigation