Skip to main content
Log in

Composite theory and the effect of water on the stiffness of horn keratin

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

α-keratin is a hydrogen-bond dominated composite material. The dry α-keratin (0% regain) of the horns of an oryx has a stiffness of 6.1 GPa. Water interacts only with the amorphous matrix of α-keratin to break down structural hydrogen bonds and reduce stiffness to 4.3 GPa at 20% regain and 1.8 G Pa at 40% regain. The effect of water on the stiffness of horn α-keratin is not modelled by the Voigt estimate at high to moderate regains. Water interacts probably with the disordered regions within the fibres which reduces the effective fibre length. As a result the reinforcing effect of the fibres is reduced and the stiffness and strength of hydrated horn keratin are less than that predicted by the simple Voigt estimate. If the Voigt estimate is modified to take into account a short fibre length of 40 nm, the stiffness and tensile strength of horn α-keratin can be modelled successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Harris, in Proceedings of Symposium of the Society for Experimental Biology No. 34, Leeds University, September 1979, edited by J. F. V. Vincent and J. D. Currey (Cambridge University Press, Cambridge, 1980) p. 37.

    Google Scholar 

  2. R. F. Ker, DPhil thesis, University of Oxford (1977).

  3. A. Kelly, “Strong solids” (Oxford University Press, Oxford, 1973).

    Google Scholar 

  4. R. D. B. Fraser andT. P. Macrae, in Proceedings of Symposium of the Society for Experimental Biology No. 34, Leeds University, September 1979, edited by J. F. V. Vincent and J. D. Currey (Cambridge University Press, Cambridge, 1980) p. 211.

    Google Scholar 

  5. R. E. Dickerson andI. Geis. “The structure and action of proteins” (W. A. Benjamin, Menlo Park, California, 1969).

    Google Scholar 

  6. A. H. Nissan,Macromolecules 9 (1976) 540.

    Google Scholar 

  7. M. Druhala andM. Feughelman,Colloid Polym. Sci. 252 (1974) 381.

    Google Scholar 

  8. J. B. Speakman,J. Soc. Chem. Ind. 49 (1930) 209.

    Google Scholar 

  9. I. C. Watt andJ. D. Leeder,Trans. Faraday Soc. 60 (1964) 1335.

    Google Scholar 

  10. S. Rosenbaum,J. Polym. Sci. C 31 (1970) 45.

    Google Scholar 

  11. G. King,Trans. Faraday Soc. 41 (1945) 479.

    Google Scholar 

  12. R. D. B. Fraser, T. P. Macrae andG. E. Rogers. “Keratins: their composition, structure and biosynthesis” (Thomas, Springfield, Illinois, 1972).

    Google Scholar 

  13. R. C. Stephens, “Strength of materials” (Arnold, London, 1970).

    Google Scholar 

  14. R. J. Roark andW. C. Young, “Formulas for stress and strain”, 5th Edn (McGraw-Hill, London, 1975).

    Google Scholar 

  15. F. L. Warburton,J. Text. Inst. 39 (1948) 297.

    Google Scholar 

  16. A. C. Kitchener, PhD thesis, University of Reading (1985).

  17. S. A. Wainwright, W. D. Biggs, J. D. Currey andJ. M. Gosline, “Mechanical design in organisms” (Arnold, London, 1976).

    Google Scholar 

  18. M. Feughelman,J. Macromol. Sci.-Phys. B 16 (1979) 155.

    Google Scholar 

  19. G. E. Rogers,Ann. N.Y. Acad. Sci. 83 (1959) 378.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchener, A., Vincent, J.F.V. Composite theory and the effect of water on the stiffness of horn keratin. J Mater Sci 22, 1385–1389 (1987). https://doi.org/10.1007/BF01233138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233138

Keywords

Navigation