Skip to main content
Log in

Heterogeneity in spinal radial glia demonstrated by intermediate filament expression and HRP labelling

  • Published:
Journal of Neurocytology

Summary

Considerable evidence indicates that radial glial cells play an active role in guiding growing neurites during development of the vertebrate CNS. In this paper we describe subpopulations of radial glia in the spinal cord of the axolotl. Amphibians maintain radial glia throughout life, and subpopulations are described using anatomical criteria following filling of individual cells with horseradish peroxidase and immunocytochemical staining with a range of intermediate filament antibodies.

Radial glial cells in specific regions of the spinal cord stain with a range of antibodies specific to human keratins 8 and 18, and to glial fibrillary acid protein (GFAP). Some of these antibodies show selective staining localized to specific regions of individual glial cell processes. Immunoblotting analysis indicates that two keratins are present in the axolotl CNS corresponding to the two earliest embryonic keratins of vertebrates, keratins 8 and 18. Comparisons of molecular weight indicate that these may correspond to keratins identified inXenopus laevis, the genes of which have been cloned. Axolotl GFAP is also identified in Western blots and may be present in two forms of differing molecular weight.

These results are discussed in terms of the likely role of radial glial cells, and comparisons are drawn between the keratin and GFAP types seen, in the axolotl spinal cord and of those in other vertebrate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, A. T. (1986)Electrophoresis: Theory, techniques, biochemical and clinical applications. London, New York: Oxford (Clarendon) Press.

    Google Scholar 

  • Bennett, G. S. (1987) Changes in intermediate filament composition during neurogenesis.Current Topics in Development Biology 21, 151–84.

    Google Scholar 

  • Broers, J. L. V., Carney, D. N., Kleinrot, M., Schaart, G., Lane, E. B., Vooijs, G. P. &Ramaekers, F. C. S. (1986) Intermediate filament proteins in classic and variant types of small cell lung carcinoma cell lines: a biochemical and immunochemical analysis using a panel of monoclonal and polyclonal antibodies.Journal of Cell Science 83, 37–60.

    PubMed  Google Scholar 

  • Dahl, D. (1976) Glial fibrillary acidic protein from bovine and rat brain: degradation in tissue and homogenates.Biochemica et Biophysica Acta 420, 142–54.

    Google Scholar 

  • Dahl, D. (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination.Journal of Neuroscience Research 6, 741–8.

    PubMed  Google Scholar 

  • Dahl, D., Crosby, C. J., Sethi, J. S. &Bignami, A. (1985) Glial fibrillary acidic (GFA) protein in vertebrates: im- munofluorescence and immunoblotting study with monoclonal and polyclonal antibodies.Journal of Comparative Neurology 239, 75–88.

    PubMed  Google Scholar 

  • Ferretti, P., Fekete, D. M., Patterson, M. &Lane, E. B. (1989) Transient expression of simple epithelial keratins by mesenchymal cells of regenerating newt limb.Developmental Biology 133, 415–24.

    PubMed  Google Scholar 

  • Fouquet, B., Herrmann, H., Franz, J. K. &Franke, W. W. (1988) Expression of intermediate filament proteins during development ofXenopus larevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia.Development 104, 533–48.

    PubMed  Google Scholar 

  • Franz, J. Z. &Franke, W. W. (1986) Cloning of the cDNA and amino acid sequence of cytokeratin expressed in oocytes ofXenopus laevis.Proceedings of the National Academy of Sciences (USA) 83, 6475–9.

    Google Scholar 

  • Franz, J. K., Gall, L., Williams, M. A., Picheral, B. &Franke, W. W. (1983) Intermediate size filaments in a germ cell: expression of cytokeratins in oocytes and eggs of the frogXenopus.Proceedings of the National Academy of Sciences (USA) 80, 6254–8.

    Google Scholar 

  • Fuchs, E. (1988) Keratins as biochemical markers of epithelial differentiation.Trends in Genetics 4, 277–81.

    PubMed  Google Scholar 

  • Giordano, S., Glasgow, E., Tesser, P. &Schechter, N. (1989) A type II keratin is expressed in glial cells of the goldfish visual pathway.Neuron 2, 1507–16.

    PubMed  Google Scholar 

  • Godsave, S. F., Anderton, B. H. &Wylie, C. C. (1986) The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord ofXenopus laevis.Journal of Embryology and Experimental Morphology 97, 201–23.

    PubMed  Google Scholar 

  • Holder, N. &Clarke, J. D. W. (1988) Is there a correlation between continuous neurogenesis and directed axon regeneration in the vertebrate nervous system?Trends in Neuroscience 11, 94–9.

    Google Scholar 

  • Jessell, T. M., Bovolenta, P., Placzek, M., Tessier- Lavigne, M. &Dodd, J. (1989) Polarity and patterning in the neural tube: the origin and function of the floor plate. InThe Cellular Basis of Morphogenesis. Ciba Symposium (in press).

  • Johnson, G., Davidson, R., McNamee, K., Russell, G., Goodwin, D. &Holborow, E. (1982) Fading of im- munofluorescence during microscopy: a study of the phenomenon and its remedy.Journal of Immunological Methods 55, 231–42.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • LaFlamme, S. E., Jamrich, M., Richter, K., Sargent, T. D. &Dawid, I. B. (1988)Xenopus endo B is a keratin preferentially expressed in the embryonic notochord.Genes and Development 2, 853–62.

    PubMed  Google Scholar 

  • Lane, E. B. (1982) Monoclonal antibodies provide specific intra-molecular markers for the study of epithelial tono- filament organization.Journal of Cell Biology 92, 665–73.

    PubMed  Google Scholar 

  • Lane, E. B., Barter, J., Purkis, P. E. &Leight, I. M. (1985) Keratin antigens in differentiating systems.Annals of the New York Academy of Sciences 455, 241–58.

    PubMed  Google Scholar 

  • Leary, J. J., Brigati, D. J. &Ward, D. C. (1983) Rapid and sensitive colorimetric method for visualising biotin- labelled DNA probes hydridised to DNA or RNA immobilised on nitrocellulose: Bio-blots.Proceedings of the National Academy of Sciences (USA) 80, 4045–9.

    Google Scholar 

  • Markl, J. &Franke, W. W. (1988) Localisation of cyto- keratins in tissues of the rainbow trout: Fundamental differences in expression pattern between fish and higher vertebrates.Differentiation 39, 97–122.

    PubMed  Google Scholar 

  • Miller, R. H. &Liuzzi, F. J. (1986) Regional specialisation of the radial glial cells of the adult frog spinal cord.Journal of Neurocytology 15, 187–96.

    PubMed  Google Scholar 

  • Miyatani', S., Winkles, J. A., Sargent, T. D. &Dawid, I. B. (1986) Stage-specific keratins inXenopus laevis embryos and tadpoles: the XK81 gene family.Journal of Cell Biology 103, 1957–65.

    PubMed  Google Scholar 

  • Moll, R., Frank, W. W., Schiller, D. L., Geiger, B. &Krepler, R. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.Cell 31, 11–24.

    PubMed  Google Scholar 

  • Noble, M., Fok-Seang, J. &Cohen, J. (1984) Glia are a unique substrate for thein vitro growth of central nervous system neurons.Journal of Neuroscience 4, 1892–903.

    PubMed  Google Scholar 

  • Quellet, T., Levac, P. &Royal, A. (1988) Complete sequence of the mouse type II keratin EndoA: its amino- terminal region resembles mitochondrial signal peptides.Gene 70, 75–84.

    PubMed  Google Scholar 

  • Quitschke, W., Jones, P. S. &Schechter, N. (1985) Survey of intermediate filament proteins in optic nerve and spinal cord: Evidence for differential expression.Journal of Neurochemistry 44, 1465–76.

    PubMed  Google Scholar 

  • Quitschke, W. &Schechter, N. (1984) 58,000 Dalton intermediate filament proteins of neuronal and non neuronal origin in the goldfish visual pathway.Journal of Neurochemistry 42, 569–76.

    PubMed  Google Scholar 

  • Rakic, P. (1988) Specification of cerebral cortical areas.Science 241, 170–6.

    PubMed  Google Scholar 

  • Ramaekers, F., Huijsmans, A., Moesker, O., Kant, A., Jap, P., Herman, C. &Vooijs, P. (1983) Monoclonal antibody to keratin filaments specific for glandular epithelia and their tumors: use in surgical pathology.Laboratory Investigation 49, 353–61.

    PubMed  Google Scholar 

  • Raemaekers, F. C. S., Huijsmans, A., Schaart, G., Moesker, O. &Vooijs, P. (1987) Tissue distribution of keratin 7 as monitored by a monoclonal antibody.Experimental Cell Research 170, 235–49.

    PubMed  Google Scholar 

  • Rosenberg, M., Raychaudhury, M., Shows, T. B., Le Beau, M. M. &Fuchs, E. (1988) A group of type I keratin genes on human chromosome 17. Characterization and expression.Molecular and Cellular Biology 8, 722–36.

    PubMed  Google Scholar 

  • Sasaki, H. &Mannen, H. (1981) Morphological analysis of astrocytes in the Bullfrog (Rana catesbeiana) spinal cord with special reference to the site of attachment of their processes.Journal of Comparative Neurology 198, 13–35.

    PubMed  Google Scholar 

  • Silver, J., Lorenz, S. E., Wahlstein, D. &Coughlin, J. (1982) Axonal guidance during development of the great cerebral commissures. Descriptive and experimental studies,in vivo, on the role of preformed glial pathways.Journal of Comparative Neurology 210, 10–29.

    PubMed  Google Scholar 

  • Silver, J. &Sidman, R. L. (1980) A mechanism for the guidance and topographic patterning of retinal ganglion cell axons.Journal of Comparative Neurology 189, 101–11.

    PubMed  Google Scholar 

  • Singer, M., Nordlander, R. H. &Egar, M. (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt. The blueprint hypothesis of neuronal pathway patterning.Journal of Comparative Neurology 185, 1–22.

    PubMed  Google Scholar 

  • Singer, P. A., Trevor, K. &Oshima, R. G. (1986) Molecular cloning and characterization of the endoB cytokeratin expressed in preimplantation mouse embryos.Journal of Biological Chemistry 261, 538–47.

    PubMed  Google Scholar 

  • Steinert, P. M. &Roop, D. R. (1988) Molecular and cellular biology of intermediate filaments.Annual Reviews of Biochemistry 57, 595–625.

    Google Scholar 

  • Stensaas, L. J. &Stensaas, S. S. (1968) AstrOCytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. 1. Light microscopy.Zeitschrift für Zellforschung 86, 184–213.

    Google Scholar 

  • Szaro, B. G. &Gainer, H. (1988) Immunocytochemical identification of non-neuronal intermediate filament proteins in the developingXenopus laevis nervous system.Developmental Brain Research 43, 207–24.

    Google Scholar 

  • Tank, P. &Holder, N. (1981) Pattern regulation in the limbs of urodelean amphibians.Quarterly Reviews of Biology 56, 113–42.

    Google Scholar 

  • Tapscott, S. J., Bennett, G. S., Toyama, Y., Kleinbart, F. &Holtzer, H. (1981) Intermediate filament proteins in the developing chick spinal cord.Developmental Biology 86, 40–54.

    PubMed  Google Scholar 

  • Tessier-Lavigne, M., Placzek, M., Lumsden, A., Dodd, J. &Jessell, T. (1988) Chemotropic guidance of developing axons in the mammalian central nervous system.Nature 336, 775–8.

    PubMed  Google Scholar 

  • Towbin, H., Staekelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets; procedure and some applications.Proceedings of the National Academy of Sciences (USA) 76, 4350–4.

    Google Scholar 

  • Van Gehuchten, A. (1885) La Moelle épinière de la truite (Truttofario).Cellule 11, 111–74.

    Google Scholar 

  • Van Gehuchten, A. (1888) La Moelle épinière des larves des Batraciens (Salamandra maculosa).Archives de Biologie de Paris 15, 599–619.

    Google Scholar 

  • Vanselow, J., Thanos, S., Godement, P. Henke-Fahle, S. &Bonhoeffer, F. (1989) Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development.Developmental Brain Research 45, 15–27.

    PubMed  Google Scholar 

  • Wilson, S. &Holder, N. (1988) Evidence for axonal decision regions in the axolotl peripheral nervous system.Development 102, 823–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holder, N., Clarke, J.D.W., Kamalati, T. et al. Heterogeneity in spinal radial glia demonstrated by intermediate filament expression and HRP labelling. J Neurocytol 19, 915–928 (1990). https://doi.org/10.1007/BF01186819

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186819

Keywords

Navigation