Skip to main content
Log in

Microtubule-associated protein 2 and the organization of cellular microtubules

  • Published:
Journal of Neurocytology

Summary

Microtubule-associated proteins (MAPs) are prominent components of the neuronal cytoskeleton that can promote microtubule formation and whose expression is under strong developmental regulation. They are thought to be involved in organizing the structure of microtubule fascicles in axons and dendrites, although whether they form active cross-links between microtubules or serve as strut-like spacer elements has yet to be resolved. In the experiments reported here we explored their influence on microtubules by expressing them in non-neuronal cells using DNA transfection techniques. We confirm earlier reports that microtubule-associated proteins of the MAP2/tau class can induce bundling of microtubules. In addition we find that MAP2 causes the rearrangement of microtubules in the cytoplasm in a manner that is dependent on the length of the microtubule bundles. Short bundles are straight and run across the cytoplasm whereas long bundles form a marginal band-like array at the periphery. We suggest that the latter arrangement is produced when microtubule bundles that are too long to fit inside the diameter of the cell bend under the restraining influence of the cortical cytoskeleton. In confirmation of this, we show that when the cortical actin network is depolymerized by cytochalasin B the MAP2-containing microtubule bundles push out cylindrical extensions from the cell surface. These results suggest that the induction of stiff microtubules bundles by MAP2, coupled with a breach in the cortical actin network, can confer two of the properties characteristic of neuronal processes; their cylindrical form and the presence of fasciculated microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa, H., Emori, Y., Mori, A., Murofushi, H., Sakai, H. &Suzuki, K. (1991) Functional analyses of the domain structure of microtubule-associated protein-4 (MAP-U).Journal of Biological Chemistry 266, 9841–6.

    PubMed  Google Scholar 

  • Bernhardt, R. &Matus, A. (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.Journal of Comparative Neurology 226, 203–21.

    PubMed  Google Scholar 

  • Bray, D., Thomas, C. &Shaw, G. (1978) Growth cone formation in cultures of sensory neurons.Proceedings of the National Academy of Sciences (USA) 75, 5226–9.

    Google Scholar 

  • Brion, J. P., Guilleminot, J., Couchie, D., FlamentDurand, J. &Nunez, J. (1988) Both adult and juvenile tau microtubule-associated proteins are axon specific in the developing and adult rat cerebellum.Neuroscience 25, 139–46.

    PubMed  Google Scholar 

  • Brown, P. A. &Berlin, R. D. (1985) Packing volume of sedimented microtubules: regulation and potential relationship to an intracellular matrix.Journal of Cell Biology 101, 1492–1500.

    PubMed  Google Scholar 

  • Burgoyne, R. D. (1986) Microtubule proteins in neuronal differentiation.Comparative Biochemistry & Physiology (B) 83, 1–8.

    Google Scholar 

  • Centonze, V. E., Ruben, G. C. &Sloboda, R. D. (1986) Structure and composition of the cytoskeleton of nucleated erythrocytes: III organization of the cytoskeleton of bufo marinus erythrocytes as revealed by freeze-dried platinum-carbon replicas and immunofluorescence microscopy.Cell Motility and the Cytoskeleton 6, 376–88.

    PubMed  Google Scholar 

  • Chapin, S. J., Bulinski, J. C. &Gundersen, G. G. (1991) Microtubule bundling in cells.Nature 349, 24.

    Google Scholar 

  • Chen, C. &Okayama, H. (1987) High efficiency transformation of mammalian cells by plasmid DNA.Molecular and Cellular Biology 7, 2745–52.

    PubMed  Google Scholar 

  • De Brabander, M., Geuens, G., Nuydens, R., Willebrords, R. &De Mey, J. (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores.Proceedings of the National Academy of Sciences (USA) 78, 5608–12.

    Google Scholar 

  • Doll, T., Papandrikopoulou, A. &Matus, A. (1990) Nucleotide and amino acid sequences of embryonic rat MAP2c.Nucleic Acids Research 18, 361.

    PubMed  Google Scholar 

  • Friden, B., Nordh, J., Wallin, M., Deinum, J. &Norden, B. (1988) Effects of proteolysis of the extending parts of high-molecular-weight microtubule-associated proteins on interactions between microtubules.Biochimica et Biophysica Acta 955, 135–42.

    PubMed  Google Scholar 

  • Garner, C. C. &Matus, A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.Journal of Cell Biology 106, 779–83.

    PubMed  Google Scholar 

  • Gordon-Weeks, P. R. (1993) Organization of microtubules in axonal growth cones: a role for aucrotubule-associated protein MAP 1B.Journal of Neurocytology 22, 717–725.

    PubMed  Google Scholar 

  • Gottlieb, R. A. &Murphy, D. B. (1983) The pattern of MAP-2 binding on microtubules: visual enhancement of MAP attachment sites by antibody labelling and electron microscopy.Journal of Ultrastructure Research 85, 175–85.

    PubMed  Google Scholar 

  • Hernandez, M. A., Wandosell, F. &Avila, J. (1987) Localization of the phosphorylation sites for different kinases in the microtubule-associated protein MAP2.Journal of Neurochemistry 48, 84–93.

    PubMed  Google Scholar 

  • Himmler, A. (1989) Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family.Molecular and Cellular Biology 9, 1389–96.

    PubMed  Google Scholar 

  • Kanai, Y., Takemura, R. &Oshima, T. (1989) Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA.Journal of Cell Biology 109, 1173–84.

    PubMed  Google Scholar 

  • Kim, H., Binder, L. I. &Rosenbaum, J. L. (1979) The periodic association of MAP2 with brain microtubulesin vitro.Journal of Cell Biology 80, 266–76.

    PubMed  Google Scholar 

  • Kindler, S., Schulz, B., Goedert, M. &Garner, C. C. (1991) Molecular structure of microtubule-associated protein 2b and 2c from rat brain.Journal of Biological Chemistry 265, 19679–84.

    Google Scholar 

  • Knopps, J., Kosik, K. S., Lee, G., Pardee, J. D., Cohen-gould, L. &McConlogue, L. (1991) Overexpression of tau in a nonneuronal cell induces long cellular processes.Journal of Cell Biology 114, 725–33.

    PubMed  Google Scholar 

  • Lee, G., Cowan, N. &Kirschner, M. (1988) The primary structure and heterogeneity of tau protein from mouse brain.Science 239, 285–8.

    PubMed  Google Scholar 

  • Letourneau, P. C., Shattuck, T. A. &Ressler, A. H. (1987) “Pull” and “push” in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol.Cell Motility and the Cytoskeleton 8, 193–209.

    PubMed  Google Scholar 

  • Lewis, S. A., Wang, D. &Cowan, N. J. (1988) Microtubule-associated protein MAP-2 shares a microtubule binding motif with tau protein.Science 242, 936–9.

    PubMed  Google Scholar 

  • Lewis, S. A., Ivanov, I. E., Lee, G. H. &Cowan, N. J. (1989) Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated and tau.Nature 342, 498–505.

    PubMed  Google Scholar 

  • Marsh, L. &Letourneau, P. C. (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B.Journal of Cell Biology 99, 2041–7.

    PubMed  Google Scholar 

  • Matus, A., Bernhardt, R., Boomer, R. &Alaimo, D. (1986) Microtubule-associated protein 2 and tubulin are differently distributed in the dendrites of developing neurons.Neuroscience 17, 371–89.

    PubMed  Google Scholar 

  • Matus, A., Riederer, B. &Huber, G. (1987) Influence of monoclonal antibodies on microtubule assembly.Journal of Neurochemistry 49, 714–20.

    PubMed  Google Scholar 

  • Matus, A. (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology.Annual Review of Neuroscience 11, 29–44.

    PubMed  Google Scholar 

  • Matus, A. (1991) Microtubule-associated proteins and neuronal morphogenesis.Journal of Cell Science supp.15, 61–7.

    Google Scholar 

  • Murphy, D. B., Grasser, W. A. &Wallis, K. T. (1986) Immunofluorescence examination of beta tubulin expression and marginal band formation in developing chicken erythroblasts.Journal of Cell Biology 102, 628–35.

    PubMed  Google Scholar 

  • Murphy, D. B. &Borisy, G. G. (1975) Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro.Proceedings of the National Academy of Sciences (USA) 72, 2696–700.

    Google Scholar 

  • Nunez, J. (1986) Differential expression of microtubule components during brain development.Developmental Neuroscience 8, 125–41.

    PubMed  Google Scholar 

  • Olmsted, J. B. (1991) Non-motor microtubule-associated proteins.Current Opinions in Cell Biology 3, 52–8.

    Google Scholar 

  • Papandrikopoulou, A., Doll, T., Tucker, R. P., Garner, C. C. &Matus, A. (1989) Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2.Nature 340, 650–2.

    PubMed  Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. Def. (1976)The Fine Structure of the Nervous System. Philadelphia, PA: W. B. Saunders.

    Google Scholar 

  • Sandoval, I. V., Macdonald, E., Jameson, J. L. &Cuatrecasas, P. (1977) Role of nucleotides in tubulin polymerization: effect of guanylyl 5′-methylenediphosphonate.Proceedings of the National Academy of Sciences (USA) 74, 4881–5.

    Google Scholar 

  • Sato, M., Schwartz, W. H., Selden, S. C. &Pollard, T. D. (1988) Mechanical properties of brain tubulin and microtubules.Journal of Cell Biology 106, 1205–11.

    PubMed  Google Scholar 

  • Schiff, P. B. &Horwitz, S. B. (1980) Taxol stabilizes microtubules in mouse fibroblast cells.Proceedings of the National Academy of Sciences (USA) 77, 1561–5.

    Google Scholar 

  • Seeds, N. W., Gilman, A., Amano, T. &Nirenberg, M. W. (1970) Regulation of axon formation by clonal lines of a neural tumor.Proceedings of the National Academy of Sciences (USA) 66, 160–7.

    Google Scholar 

  • Sloboda, R. D. &Rosenbaum, J. L. (1979) Decoration and stabilization of intact, smooth-walled microtubules with microtubule-associated proteins.Biochemistry 18, 48–55.

    PubMed  Google Scholar 

  • Tanaka, E. M. &Kirschner, M. (1991) Microtubule behaviour in the growth cones of living cells during axon elongation.Journal of Cell Biology 115, 345–63.

    PubMed  Google Scholar 

  • Tucker, R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review.Brain Research Reviews 15, 101–20.

    PubMed  Google Scholar 

  • Viereck, C., Tucker, R. P. &Matus, A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.Journal of Neuroscience 9, 3547–57.

    PubMed  Google Scholar 

  • Voter, W. A. &Erickson, H. P. (1982) Electron microscopy of MAP2 (microtubule-associated protein 2).Journal of Ultrastructure Research 80, 374–82.

    PubMed  Google Scholar 

  • Weingarten, M., Lockwood, A., Hwo, S. -Y. &Kirschner, M. (1975) A protein factor essential for microtubule assembly.Proceedings of the National Academy of Sciences (USA) 72, 1858–62.

    Google Scholar 

  • Weisshaar, B., Doll, T. &Matus, A. (1992) Reorganisation of the microtubular cytoskeleton by embryonic microtubule-associated protein 2 (MAP2c).Development 116, 1151–61.

    PubMed  Google Scholar 

  • West, R. R., Tenbarge, K. M. &Olmsted, J. B. (1991) A model for microtubule-associated protein 4 structure. Domains defined by comparisons of human, mouse, and bovine sequences.Journal of Biological Chemistry 266, 21886–96.

    PubMed  Google Scholar 

  • Wille, H., Mandelkow, E. M., Dingus, J., Vallee, R. B., Binder, L. I. &Mandelkow, E. (1992) Domain structure and antiparallel dimers of microtubule-associated protein 2 (MAP2).Journal of Structural Biology 108, 49–61.

    PubMed  Google Scholar 

  • Winkler, B. &Solomon, F. (1991) A role for microtubule bundles in the morphogenesis of chicken erythrocytes.Proceedings of the National Academy of Sciences (USA) 88, 6033–37.

    Google Scholar 

  • Yamada, K. M., Spooner, B. S. &Wessels, N. K. (1970) Axon growth: roles of microfilaments and microtubules.Proceedings of the National Academy of Sciences (USA) 66, 1206–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisshaar, B., Matus, A. Microtubule-associated protein 2 and the organization of cellular microtubules. J Neurocytol 22, 727–734 (1993). https://doi.org/10.1007/BF01181318

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181318

Keywords

Navigation