Skip to main content
Log in

Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Eifelite of variable composition is uniaxial positive withn 0 near 1.543 andn e near 1.544, a between 10.14 and 10.15 Å, andc about 14.22 Å, space groupP 6/m 2/c 2/c. There is a complete series of solid solution between the eifelite end member KNa3Mg4Si12O30 and roedderite, KNaMg5Si12O30, following the 2 Na⇌Mg substitution. Both eifelite and roedderite have milarite-type structures, but Na is always in six-coordinated sites: In roedderite Na occupies solely a newly defined B′[6]-position which is slightly displaced alongc from the ideal B[9]-position lying on the (001/2)-mirror plane in K2Mg5Si12O30. In eifelite Na is located both inB[6] and in theA [6]-positions, where it partially replaces Mg. Eifelite has the highest cation occupancy of all osumilite group minerals known thus far.

Both eifelite and roedderite occur in vesicles of contact metamorphosed basement xenoliths ejected with the leucite tephrite lava of the Quaternary Bellerberg volcano in the Eifel, West Germany. They are considered to be precipitates from highly alkaline, MgSi-rich, but Al-deficient gas phases that originated through interaction of gaseous igneous differentiates with the xenoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham K, Schreyer W (1973) Petrology of a ferruginous hornfels from Riekensglück, Harz Mountains, Germany. Contrib Mineral Petrol 40:275–292

    Google Scholar 

  • Abraham K, Gebert W, Medenbach O, Schreyer W, Hentschel G (1980) KNa2Mg4.5 [Si12O30], ein neues Mineral der Milaritgruppe aus der Eifel, mit Natrium in Oktaederposition. Fortschr Mineral 58, Beih 1:3–4

    Google Scholar 

  • Bakakin VV, Balko VP, Solovyeva LP (1975) Crystal structures of milarite, armenite, and sogdianite. Sov Phys Crystallogr 19:460–62

    Google Scholar 

  • Belov NV, Tarkhova TN (1951) Crystal structure of milarite. Trudy Inst Krist, Akad Nauk SSSR 6:83–140 (in Russ)

    Google Scholar 

  • Berg JH, Wheeler EP, II (1976) Osumilite of deep-seated origin in the contact aureole of the anorthositic Nain complex, Labrador. Am Mineral 61:29–37

    Google Scholar 

  • Brauns R (1911) Die kristallinen Schiefer des Laacher-See-Gebietes und ihre Umbildung zu Sanidinit. E Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p 61

    Google Scholar 

  • Bunch TE, Fuchs LH (1969) Yagiite, a new sodium-magnesium analogue of osumilite. Am Mineral 54:14–18

    Google Scholar 

  • Černý P, Hawthorne FC, Jarosewich E (1980) Crystal chemistry of milarite. Can Mineral 18:41–57

    Google Scholar 

  • Cradwick ME, Taylor HFW (1972) Crystal structure of Na2Mg2Si6O15. Acta Crystallogr B 28:3583–3587

    Google Scholar 

  • Fleischer M (1981) Glossary of mineral species. Mineralogical Record, Tucson, Arizona, USA

    Google Scholar 

  • Forbes WC, Baur WH, Khan AA (1972) Crystal chemistry of milaritetype minerals. Am Mineral 57:463–472

    Google Scholar 

  • Frechen J (1947) Vorgänge der Sanidinit-Bildung im Laacher-Seegebiet. Fortschr Mineral 26:147–166

    Google Scholar 

  • Hentschel G, Abraham K, Schreyer W (1977) Roedderit und Osumilith aus dem Laacher Vulkangebiet. Fortschr Mineral Beitr 1 55, 43–44

    Google Scholar 

  • Hentschel G, Abraham K, Schreyer W (1980) First terrestrial occurrence of roedderite in volcanic ejecta of the Eifel, Germany. Contrib Mineral Petrol 73:127–130

    Google Scholar 

  • Ito T, Morimoto N, Sadanaga R (1952) The crystal structure of milarite. Acta Crystallogr 5:209–213

    Google Scholar 

  • Khan AA, Baur WH, Forbes WC (1971) Synthetic magnesium merrihueite, dipotassium pentamagnesium dodecasilicate: a tetrahedral magnesiosilicate framework crystal structure. Acta Crystallogr B28:267–272

    Google Scholar 

  • Medenbach O (1980) Ein neuer Mikro-Refraktometer-Spindel-Tisch. Fortschr Mineral 58, Bh 1, 90–91

    Google Scholar 

  • Schairer JF, Yoder HS, Keene AG (1954) The systems Na2O- MgO-SiO2 and Na2O-FeO-SiO2. Carnegie Inst Washington, Yearb 53:123–125

    Google Scholar 

  • Schreyer W, Hentschel G, Abraham K (1983) Osumilith in der Eifel und die Verwendung dieses Minerals als petrogenetischer Indikator. Tschermaks Mineral Petrogr Mitt (in press)

  • Seifert F, Schreyer W (1966) Fluide Phasen im System K2O- MgO-SiO2-H2O und ihre mögliche Bedeutung für die Entstehung ultrabasischer Gesteine. Ber Bunsenges Phys Chem 70:1045–1050

    Google Scholar 

  • Seifert F, Schreyer W (1968) Die Möglichkeit der Entstehung ultrabasischer Magmen bei Gegenwart geringer Alkalimengen. Geol Rundsch 57:349–362

    Google Scholar 

  • Witte P (1975) Synthese und Stabilität von Amphibolphasen und wasserfreien Na-Mg-Silikaten im System Na2O- MgO-SiO2-H2O, die Kompatibilitätsbeziehungen innerhalb des Sireichen Teils des quaternären Systems oberhalb 600° C im Druckbereich l atm-5 kb\(P_{H_2 O} \) und ihre petrologische Bedeutung. Diss. Ruhr-Universität Bochum, p 256

  • Wörner G, Schmincke H-U, Schreyer W (1982) Crustal xenoliths from the Quaternary Wehr volcano (East Eifel). Neues Jahrb Mineral Abh 144:29–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, K., Gebert, W., Medenbach, O. et al. Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contr. Mineral. and Petrol. 82, 252–258 (1983). https://doi.org/10.1007/BF01166619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166619

Keywords

Navigation