Skip to main content
Log in

Conversion of acrylonitrile-based precursors to carbon fibres

Part 2Precursor morphology and thermooxidative stabilization

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The progress of stabilization of two compositions of acrylic fibres with various orientations has been followed by a variety of techniques. The thermooxidative treatments for stabilization have been carried out in a continuous process and also in a batch process under free shrinkage, constant length and constant tension conditions. The morphological model of acrylic fibres consists of an alternating sequence of laterally ordered and laterally disordered regions along the fibre direction. This structure is consistent with the observations based on small-angle X-ray scattering of copper- impregnated precursor fibres and thermomechanical response, thermal stress development, calorimetry, wide- and small-angle X-ray scattering and sonic modu-lus measured at different extents of stabilization. Lateral as well as orientational order in these fibres can be increased markedly through a high-temperature deformation process prior to stabilization. An increase in perfection and extent of order is observed in the early stages of stabilization. There is also a simultaneous decrease in the orientation of the disordered phase at this stage and the extent of this decrease depends on the axial constraints imposed on the fibre. Little difference in the rate of stabilization is observed as measured by density or oxygen uptake for fibres with different extents of orientation, lateral order or restraint. Fibres containing itaconic add, a stabilization catalyst did show an increased rate of stabilization. Inferences have been drawn regarding additional research pertaining to achieving high order in precursor fibres, minimizing orientational relaxation during oxidative stabilization, and the techniques for monitoring the extents of the stabilization treatment and the changes in relevant morphological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Jain andA. S. Abhiraman,J. Mater. Sci. 22 (1987) 278.

    Google Scholar 

  2. M. K. Jain, M. Balasubramanian andA. S. Abhiraman, submitted for publication.

  3. M. K. Jain, PhD thesis, Georgia Institute of Technology, Atlanta, Georgia (1985).

  4. L. E. Alexander, “X-ray Diffraction Methods in Polymer Science,” (Wiley-Interscience, New York, 1969).

    Google Scholar 

  5. M. K. Jain andA. S. Abhiraman,J. Mater. Sci. 18 (1983) 179.

    Google Scholar 

  6. S. B. Warner, D. R. Uhlmann andL. H.Peebles Jr,ibid. 14 (1979) 1893.

    Google Scholar 

  7. S. B. Warner, L. H. Peebles Jr andD. R. Uhlmann,ibid. 14 (1975) 565.

    Google Scholar 

  8. O. P. Bahl andL. M. Manocha,Fibre Sci. Technol. 9 (1976) 77.

    Google Scholar 

  9. D. J. Muller, E. Fitzer andA. K. Fiedler, Proceedings of the International Conference on Carbon Fibres, their composites and applications, (Plastics Institute, London 1971) paper 2.

    Google Scholar 

  10. E. Fitzer andD. J. Muller,Die Makromol. Chemie 144 (1971) 117.

    Google Scholar 

  11. E. Fitzer andM. Heyn,Chem. Ind. 16 (1976) 663.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, M.K., Balasubramanian, M., Desai, P. et al. Conversion of acrylonitrile-based precursors to carbon fibres. J Mater Sci 22, 301–312 (1987). https://doi.org/10.1007/BF01160585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160585

Keywords

Navigation