Skip to main content
Log in

On the distribution of the number of packets in the fluid flow approximation of packet arrival streams

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Fluid flow approximations are widely used for approximating models of communication systems where packet arrival streams are generated in a regular manner over certain intervals (constant rate). The appropriate mathematical model for describing those bursty arrival streams in the fluid flow framework are the well-known Markov modulated rate processes (MMRP). The paper deals with the distribution of the numberN(t) of packets in the interval [0,t] of MMRP. For two-state MMRPs and their superpositions we derive formulas for the distribution ofN(t) and its density. Further we give asymptotic results. The presented numerical results and simulation studies illustrate the goodness of the fluid flow approximation and show that the proposed numerical algorithms work well even in the case of multiplexing a large number of burst silence sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. van Arem, Discrete time analysis of a slotted transmission system, Comp. Oper. Res. 16 (1989) 101–111.

    Google Scholar 

  2. S. Asmussen,Applied Probability and Queueing Theory (Wiley, New York, 1987).

    Google Scholar 

  3. D. Anick, D. Mitra and M. Sondhi, Stochastic theory of data handling systems with multiple sources, Bell Syst. Techn. J. 61 (1982) 1871–1894.

    Google Scholar 

  4. B. Bensaou, J. Guibert, J.W. Roberts and A. Simonian, Fluid queueing models for an ATM multiplex handling on/off sources, France Telecom CNET/PAA/ATR (1991).

  5. P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  6. C. Blondia, TheN/G/1 finite capacity queue, Stoch. Models 5 (1989) 273–294.

    Google Scholar 

  7. A. Brandt, M. Brandt and H. Sulanke, A single server model for the packetwise transmission of messages, Queueing Syst. 6 (1990) 287–310.

    Google Scholar 

  8. P. Brémaud,Point Processes and Queues: Martingale Dynamics (Springer, New York, 1981).

    Google Scholar 

  9. U. Briem, T. Theimer and H. Kröner, A general discrete-time queueing model: Analysis and application,Proc. 13th Int. Teletraffic Congress, Kopenhagen (1991) pp. 13–19.

  10. M. Butto, E. Cavallero and A. Tonietti, Effectiveness of the “leaky bucket” policing mechanism in ATM networks, IEEE JSAC 9 (1991) 335–342.

    Google Scholar 

  11. C. Chamazas and D.L. Duttweiler, Encoding facsimile images for packet-switched networks, IEEE JSAC 7 (1989) 857–864.

    Google Scholar 

  12. E. Çinlar, Superposition of point processes, in:Stochastic Point Processes: Statistical Analysis, Theory and Applications, ed. P.A.W. Lewis (Wiley, New York, 1972) pp. 549–606.

    Google Scholar 

  13. L. Dittmann, S.B. Jacobsen and K. Moth, Flow enforcement algorithms for ATM networks, IEEE JSAC 9 (1991) 343–350.

    Google Scholar 

  14. A.I. Elwalid and D. Mitra, Fluid models for the analysis of design of statistical multiplexing with loss priorities on multiple classes of bursty traffic,IEEE-INFOCOM 92 (1992) pp. 415–425.

    Google Scholar 

  15. A.I. Elwalid, D. Mitra and T.E. Stern, A theory of statistical multiplexing of Markovian sources: spectral expansions and algorithms,1st Int. Conf. on Numerical Solution of Markov Chains, North Carolina (1990) pp. 238–257.

  16. A.I. Elwalid, D. Mitra and T.E. Stern, Statistical multiplexing of Markov modulated sources: theory and computational algorithms,Proc. ITC-13, Copenhagen (1991) pp. 495–499.

  17. J. Ferrandiz, The relationship between an MMPP and an MMRP, Hewlett-Packard Laboratories Bristol HPL-91-123 (September 1991).

  18. W. Fischer and K.S. Meier-Hellstern,The MMPP Cookbook.

  19. R.J. Gibbens and P.J. Hunt, Effective bandwidths for multitype UAS channel, Queueing Syst. 9 (1991) 17–28.

    Google Scholar 

  20. R. Gusella, Characterizing the variability of arrival processes with indexes of dispersion, IEEE J. J. SAC 9 (1991) 203–211.

    Google Scholar 

  21. H. Heffes and D.M. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance, IEEE JSAC 4 (1986) 856–868.

    Google Scholar 

  22. J. Kemeny and J.L. Snell,Finite Markov Chains (N.J. Van Nostrand, Princeton, 1960).

    Google Scholar 

  23. F. Kishino, K. Manabe, Y. Hayashi and H. Yasudo, Variable bit-rate coding of video signals for ATM networks, IEEE JSAC 7 (1989) 801–806.

    Google Scholar 

  24. L. Kosten, Stochastic theory of data handling systems with groups of multiple sources, in:Performance of Computer Communication Systems, eds. H. Rudin and W. Buse (Elsevier, Amsterdam, 1984), pp. 321–331.

    Google Scholar 

  25. H. Kröner, Statistical multiplexing of sporadic sources — exact and approximate performance analysis,Proc. ITC-13, Copenhagen (1991) pp. 787–793.

  26. H. Kröner, T.H. Theimer and U. Briem, Queueing models for ATM systems — a comparison,Proc. 7th ITC Specialist Seminar, Morristown (1990) paper 9.1.

  27. P.J. Kühn, R. Lehnert and R. Kleinewillinghöfer-Kopp, Present position paper on ATM reference traffic sources and traffic mixes, RACE Project R1022 TG12 30401PPRC (May 15, 1990).

  28. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson and J.D. Robbins, Performance models of statistical multiplexing in packet video communications, IEEE Trans. Commun. COM-36 (1988) 834–843.

    Google Scholar 

  29. R. Nagarajan, J.F. Kurose and D. Towsley, Approximation techniques for computing packet loss in finite buffered voice multiplexers, IEEE JSAC 9 (1991) 368–377.

    Google Scholar 

  30. M.F. Neuts,Matrix-Geometric Solutions in Stochastic Models (Johns Hopkins University Press, Baltimore, 1981).

    Google Scholar 

  31. F.N. Neuts and C.E.M. Pearce, The superposition of independent discrete Markovian packet streams, J. Appl. Prob. 28 (1991) 84–95.

    Google Scholar 

  32. I. Norros, J.W. Roberts, A. Simonian and J.T. Virtamo, The superposition of variable bit rate sources in an ATM multiplexer, IEEE JSAC 9 (1991) 378–387.

    Google Scholar 

  33. P. Sen, B. Maglaris, N.-E. Rikli and D. Anastassiou, Models for packet switching of variable bit-rate video sources, IEEE JSAC 7 (1989) 865–869.

    Google Scholar 

  34. K. Sriram and W. Whitt, Characterizing superposition arrival processes in packet multiplexers for voice and data, IEEE JSAC 4 (1986) 833–846.

    Google Scholar 

  35. T.E. Stern and A.I. Elwalid, Analysis of separable Markov-modulated rate models for information-handling systems, Adv. Appl. Prob. 23 (1991) 105–139.

    Google Scholar 

  36. R.C.F. Tucker, Accurate method for analysis of a packet-speech multiplexer with limited delay, IEEE Trans. Commun. COM-36 (1988) 479–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by a grant from the Deutsche Bundespost TELEKOM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, A., Brandt, M. On the distribution of the number of packets in the fluid flow approximation of packet arrival streams. Queueing Syst 17, 275–315 (1994). https://doi.org/10.1007/BF01158697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158697

Keywords

Navigation