Skip to main content
Log in

Isolation and identification of the principal siderophore of the plant pathogenic fungusBotrytis cinerea

  • Original Articles
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

The plant pathogenic hyphomyceteBotrytis cinerea has been shown to produce several trihydroxamate siderophores under conditions of low-iron stress. The total siderophores amounted to approximately 30 mg/l culture filtrate after 5 days of incubation in an asparagine/salt/glucose medium. Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) on a reversed phase indicated that ferrirhodin is the predominant siderophore of this fungus. Chemical characterization of the principal siderophore by fast-atom-bombardment (FAB) mass spectrometry, nuclear magnetic resonance (1H-NMR,13C-NMR) and comparison with a reference revealed the identity with ferrirhodin. NMR studies performed on desferrirhodin (desferrirhodin) in dimethylsulfoxide and water revealed the existence of two conformers in D2O resulting from acis-trans isomerization of the hydroxamic acid groups. Comparative iron-uptake studies showed the following order of uptake inB. cinerea: ferrichrysin (100%), ferrirubin (57%), ferrirhodin (45%), hexahydroferrirhodin (45%), coprogen 6%. Concentration-dependent uptake of ferrirhodin resulted in saturation kinetics only in the low concentration range of 0–30 μM (K m = 2.5 μM,V max = 80 pmol min−1 mg(−1). A non-saturable, linear uptake was observed in the high concentration range of 30–80 μM. The low concentration range appears to be the physiologically significant range, where siderophore-mediated iron transport inB. cinerea occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjimani JP, Emery T (1987) Iron uptake inMycelia sterilia EP-76. J Bacteriol 169:3664–3668

    PubMed  Google Scholar 

  • Adjimani JP, Emery T (1988) Stereochemical aspects of iron transport inMycelia sterilia EP-76. J Bacteriol 170:1377–1379

    PubMed  Google Scholar 

  • Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic acid from species ofLeucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, andSporobolomyces, and a new alanine-containing ferrichrome fromCryptococcus melibiosum. J Bacteriol 103:722–733

    PubMed  Google Scholar 

  • Barnes CL, Hossain MB, Jalal MAF, Eng-Wilmot DL, Grayson SL, Benson BA, Agarwal SK, Mocherla R, van der Helm D (1985) Ferrichrome conformations: ferrirubin, two crystal forms C41H64FeN9O17 · 10 1/2 H2O (I) and C41H64FeN9O17 · CH3CN · H2O (II) Acta Crystallogr C41:341–347

    Google Scholar 

  • Coley-Smith JR, Verhoeff K, Jarvis WR (eds) (1980) The biology ofBotrytis. Academic Press, New York

    Google Scholar 

  • Dell A, Hider RC, Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Neilands JB (1982) Field desorption and fast atom bombardment mass spectrometry of hydroxamate containing siderophores. Biomed Mass Spectrom 9:158–161

    Google Scholar 

  • Deml G, Voges K, Jung G, Winkelmann G (1984) Tetraglycylferrichrome — the first heptapeptide ferrichrome. FEBS Lett 173:53–57

    Google Scholar 

  • Diekmann H, Krezdorn E (1975) Stoffwechselprodukte von Mikroorganismen. 150. Mitteilung. Ferrirhodin, Triacetylfusigen und andere Sideramine aus Pilzen der GattungAspergillus, GruppeFumigatus. Arch Mikrobiol 106:191–194

    Google Scholar 

  • Diekmann H, Zähner H (1967) Konstitution von Fusigen und dessen Abbau zu Δ2-Anhydromevalonsäure. Eur J Biochem 3:213–218

    PubMed  Google Scholar 

  • Frank H, Nicholson G, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with novel chiral stationary phase. J Chomatogr Sci 15:174–176

    Google Scholar 

  • Huschka H, Jalal MAF, van der Helm D, Winkelmann G (1986) Molecular recognition of siderophores in fungi: role of iron-surroundingN-acyl residues and the peptide backbone during membrane transport inNeurospora crassa. J Bacteriol 167:1020–1024

    PubMed  Google Scholar 

  • Jalal MAF, Mocharla R, Barnes CL, Hossain MB, Powell DR, Benson BA, van der Helm D (1983) Iron binding cyclic hexapeptides ofAspergillus ochraceous. In: Hruby VJ, Rich DH (eds) Peptides, structure and function. Proc Am Pept Symp 8th. Pierce Chem. Co., Rockford, IL, pp 503–506

  • Jalal MAF, Galles JL, van der Helm D (1985) Structure of des(diserylglycyl)ferrirhodin, DDF, a novel siderophore fromAspergillus ochraceus. J Org Chem 50:5642–5645

    Google Scholar 

  • Jalal MAF, Love SK, van der Helm D (1986) Siderophore mediated iron(III) uptake in Gliocladium virens. 1. Properties ofcis-fusarine,trans-fusarine, dimerum acid, and their ferric complexes. J Inorg Biochem 28:417–430

    PubMed  Google Scholar 

  • Jalal MAF, Love SK, van der Helm D (1988)N α-Dimethylco-progens: three novel trihydroxamate siderophores from pathogenic fungi. Biol Metals 1:4–8

    Google Scholar 

  • Keller-Schierlein W (1963) Stoffwechselprodukte von Mikroorganismen. 45. Mitteilung. Über die Konstitution von Ferrirubin, Ferrirhodin und Ferrichrom A. Helv Chim Acta 46:1907–1920

    Google Scholar 

  • Keller-Schierlein W, Diekmann H (1970) Stoffwechselprodukte von Mikroorganismen. Zur Konstitution des Coprogens. Helv Chim Acta 53:2035–2044

    Google Scholar 

  • Kolasa T (1983) The conformational behaviour of hydroxamic acids. Tetrahedron 39:1753–1759

    Google Scholar 

  • Konetschny-Rapp S, Huschka HG, Winkelmann G, Jung G (1988) High-performance liquid chromatography of siderophores from fungi. Biol Metals 1:9–17

    Google Scholar 

  • Llinas M, Wilson DM, Neilands JB (1977) Peptide strain. Conformation dependence of the carbon-13 nuclear magnetic resonance chemical shifts in the ferrichromes. J Am Chem Soc 99:3631–3637

    PubMed  Google Scholar 

  • Manulis S, Kashman Y, Barash I (1987) Identification of siderophore-mediated uptake or iron inStemphylium botryosum. Phytochemistry 26:1317–1320

    Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa andAspergillus ochraceus. J Bacteriol 169:5873–5876

    PubMed  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia ofNeurospora crassa. Biol Metals 1:18–25

    Google Scholar 

  • Neilands JB (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena). J Am Chem Soc 74:4846–4847

    Google Scholar 

  • Neilands JB, Konopka K, Schwyn B, Coy M, Francis RT, Paw BH, Bagg A (1987) Comparative biochemistry of microbial iron assimilation. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 3–33

    Google Scholar 

  • Sayer JM, Emery TF (1968) Structures of the naturally occurring hydroxamic acids, fusarinines A and B. Biochemistry 7:184–190

    PubMed  Google Scholar 

  • Shanan-Atidi H, Bar-Eli KH (1970) A convenient method for obtaining free energies of activation by the coalescence temperature of an unequal doublet. J Phys Chem 74:961–963

    Google Scholar 

  • Smith WL, Raymond KN (1980) Synthesis of aliphatic dimericN-isopropyl hydroxamic acids and the crystal and molecular structure ofN,N′-dihydroxy-N,N′-diisopropylhexane-diamide: an hydroxamic acid in thetrans conformation. J Am Chem Soc 102:1252–1255

    Google Scholar 

  • Wiebe C, Winkelmann G (1975) Kinetic studies on the specifity of chelate-iron uptake inAspergillus. J Bacteriol 123:837–842

    PubMed  Google Scholar 

  • Winkelmann G, Huschka H (1987) Molecular recognition and transport of siderophores. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 3–33

    Google Scholar 

  • Wong BG, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J Am Chem Soc 105:810–815

    Google Scholar 

  • Zähner H, Keller-Schierlein W, Hütter R, Hess-Leisinger K, Deer A (1963) Stoffwechselprodukte von Mikroorganismen. Arch Mikrobiol 45:119–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konetschny-Rapp, S., Jung, G., Huschka, HG. et al. Isolation and identification of the principal siderophore of the plant pathogenic fungusBotrytis cinerea . Biol Metals 1, 90–98 (1988). https://doi.org/10.1007/BF01138066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01138066

Key words

Navigation