Skip to main content
Log in

Empirical comparison of the MEG and EEG: Animal models of the direct cortical response and epileptiform activity in neocortex

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

This review directly addresses the appropriateness of the dipole model as a physical representation of neocortical sources produced by evoked and spontaneous epileptiform activity in neocortex. Three dimensional electrical measurements of cellular currents in rat sensory neocortex are compared to the extracranial magnetic fields these currents produce. Comparisons are performed for the direct cortical response (DCR) evoked by electrical stimulation of the cortical surface, and for evoked and spontaneous interictal and ictal discharge of the penicillin focus in the same animal preparation. Our data support the hypothesis that evoked and epileptiform magnetic fields result from intradendritic currents oriented perpendicular to the cortical surface. Furthermore, magnetic fields can be detected from epileptic foci smaller than 3 × 3 mm2. This work provides an empirical foundation for physical models with which to interpret noninvasive neuromagnetic recordings of epileptic discharge in human focal seizure disorders. The dipole approximation appears to be appropriate for the interpretation of magnetic field phenomena in neocortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, E.D. The spread of activity in the cerebral cortex. J. Physiol., 1936, 88: 127–161.

    Google Scholar 

  • Barth, D.S., Baumgartner, C. and Di, S. Laminar interactions in rat motor cortex during cyclical excitability changes of the penicillin focus. Brain Research, 1990, 508: 105–117.

    Google Scholar 

  • Barth, D.S. and Di, S. The electrophysiological basis of epileptiform magnetic fields in neocortex. Brain Research, 1990, 550: 35–39.

    Google Scholar 

  • Barth, D.S. and Di, S. Electrophysiological basis of epileptiform magnetic fields in neocortex: Spontaneous interictal and ictal phenomena. Brain Research, 1991, (in press):

  • Barth, D.S., Di, S. and Baumgartner, C. Laminar cortical interactions during epileptic spikes studied with principal component analysis and physiological modeling. Brain Research, 1989, 484: 13–35.

    Google Scholar 

  • Barth, D.S. and Sutherling, W.W. Current source-density and neuromagnetic analysis of the direct cortical response in rat cortex. Brain Research, 1988, 450: 280–294.

    Google Scholar 

  • Barth, D.S., Sutherling, W.W. and Beatty, J. Intracellular currents of interictal penicillin spikes: Evidence from neuromagnetic mapping. Brain Research, 1986, 368: 36–48.

    Google Scholar 

  • Bishop, G.H. and Clare, M.H. Sites of origin of electric potentials in striate cortex. J. Neurophysiol., 1952, 15: 201–220.

    Google Scholar 

  • Bishop, G.H. and Clare, M.H. Responses of cortex to direct electrical stimuli applied at different depths. J. Neurophysiol., 1953, 16: 1–19.

    Google Scholar 

  • Chang, H.-T. Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J. Neurophysiol., 1951, 14: 1–21.

    Google Scholar 

  • Clare, M.H. and Bishop, G.H. Properties of dendrites: apical dendrites of the cat cortex. Electroenceph. clin. Neurophysiol., 1955, 7: 85–98.

    Google Scholar 

  • Cohen, D. and Hosaka, J. Magnetic field produced by a current dipole. J. Electrocardiol., 1976, 9: 409–417.

    Google Scholar 

  • Creutzfeldt, O.D., Watanabe, S. and Lux, H.D. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroenceph. clin. Neurophysiol., 1966, 20: 1–18.

    Google Scholar 

  • Humphrey, D.R. Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroenceph. clin. Neurophysiol., 1968, 25: 421–442.

    Google Scholar 

  • Kaufman, L., Okada, Y. and Brenner, D. On the relationship between somatic evoked potentials and fields. Intern. J. Neuroscience, 1981, 15: 223–239.

    Google Scholar 

  • Li, C.-L. and Chou, S.N. Cortical intracellular synaptic potentials and direct cortical stimulation. J. cell. comp. Physiol., 1962, 60: 1–16.

    Google Scholar 

  • Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev., 1985, 65: 37–100.

    Google Scholar 

  • Nicholson, C. and Freeman, J.A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J. Neurophysiol., 1975, 38: 356–368.

    Google Scholar 

  • Ochs, S. The direct cortical response. J. Neurophysiol., 1956, 19: 513–523.

    Google Scholar 

  • Ochs, S. and Booker, H. Spatial and temporal interaction of direct cortical responses. Exp. Neurol., 1961, 4: 70–82.

    Google Scholar 

  • Ochs, S. and Clark, F.J. Tetrodotoxin analysis of direct cortical responses. Electroenceph. clin. Neurophysiol., 1968, 24: 101–107.

    Google Scholar 

  • Okada, Y.C. Neurogenesis of evoked magnetic fields. In: S. J. Williamson, G. L. Romani, L. Kaufman and I. Modena (Ed.), Biomagnetism an Interdisciplinary Approach. Plenum Press, New York, 1983: 399–408.

    Google Scholar 

  • Okada, Y.C., Lauritzen, M. and Nicholson, C. Evoked magnetic field detected from isolated cerebellum in vitro during Purkinje cell activity and spreading depression. Soc. Neuroscience Abs., 1986, 12: 1132.

    Google Scholar 

  • Okada, Y.C., Lauritzen, M. and Nicholson, C. Magnetic field associated with neural activities in an isolated cerebellum. Brain Research, 1987a, 412: 151–155.

    Google Scholar 

  • Okada, Y.C., Lauritzen, M. and Nicholson, C. MEG source models and physiology. Phys. Med. Biol., 1987b, 32: 43–51.

    Google Scholar 

  • Okada, Y.C. and Nicholson, C. (1987). Currents underlying the magnetic evoked field in the cerebellum. 6th International Conference on Biomagnetism. 198–201.

  • Okada, Y.C. and Nicholson, C. Magnetic evoked field associated with transcortical currents in turtle cerebellum. Biophysical Journal, 1988, 53: 723–31.

    Google Scholar 

  • Petsche, H., Pockberger, H. and Rappelsberger, P. Mechanisms leading to the propagation of self-sustained seizure activities. In: H. G. Wieser, E. J. Speckmann and J. Engel (Ed.), Current Problems in Epilepsy: The Epileptic Focus. John Libbey, London, 1987: 59–81.

    Google Scholar 

  • Purpura, D.P. and Grundfest, H. Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J. Neurophysiol., 1956, 19: 573–595.

    Google Scholar 

  • Rappelsberger, P., Pockberger, H. and Petsche, H. Current source density analysis: methods and application to simultaneously recorded field potentials of the rabbit's visual cortex. Pflgers Arch., 1981, 389: 159–170.

    Google Scholar 

  • Rosenblueth, A. and Cannon, W.B. Cortical responses to electric stimulation. Amer. J. Physiol., 1942, 135: 690–741.

    Google Scholar 

  • Suzuki, H. and Ochs, S. Laminar stimulation for direct cortical responses from intact and chronically isolated cortex. Electroenceph. clin. Neurophysiol., 1964, 17: 405–413.

    Google Scholar 

  • Swinney, K.R. and Wikswo, J.P.J. A calculation of the magnetic field of a nerve action potential. Biophys. J., 1980, 32: 719–732.

    Google Scholar 

  • Wikswo, J.P. Cellular action currents. In: S. J. Williamson, G. L. Romani, L. Kaufman and I. Modena (Ed.), Biomagnetism an Interdisciplinary Approach. Plenum Press, New York, 1983: 173–207.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Magnetic fields of the cerebral cortex. In: S. N. Erné, H.-D. Hahlbohm and H. Lbbig (Ed.), Biomagnetism. Walter de Gruyter, Berlin, 1981: 353–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by USPHS grant 1-RO1-NS22575, NSF grant BNS-86-57764, and Whitaker Foundation grant S880620.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, D.S. Empirical comparison of the MEG and EEG: Animal models of the direct cortical response and epileptiform activity in neocortex. Brain Topogr 4, 85–93 (1991). https://doi.org/10.1007/BF01132765

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01132765

Key words

Navigation