Skip to main content
Log in

The path probability method: An atomistic technique of diffusion

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The path probability method (PPM) of irreversible statistical mechanics has been successfully applied to various diffusion problems. The major advantage of this atomistic treatment over the phenomenological approach of irreversible thermodynamics is that all Onsager matrix coefficients can be derived analytically so that relations among measurable quantities can be clearly understood in terms of microscopic parameters. This review article attempts to present the PPM in the simplest possible form. The importance of the PPM as an atomistic technique is illustrated using a simple example. The applicability and limitations of the technique are also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Peterson, in “Solid State Physics”, Vol. 22, edited by F. Seitz, D. Turnbull and H. Ehrenreich (Academic Press, New York, 1968) p. 409.

    Google Scholar 

  2. A. D. Le Claire, in “Physical Chemistry (Solid State)”, Vol. 10, edited by H. Eyring, D. Henderson and W. Jost (Academic Press, New York, 1970) p. 261.

    Google Scholar 

  3. J. R. Manning, “Diffusion Kinetics for Atoms in Crystals” (Van Nostrand, New York, 1968).

    Google Scholar 

  4. A. B. Lidiard,Phil. Mag. 46 (1955) 1218.

    Google Scholar 

  5. N. G. vanKampen, in “Fluctuation Phenomena in Solids”, edited by R. E. Burgess (Academic Press, New York, 1965) p. 139.

    Google Scholar 

  6. G. E. Murch andS. J. Rothman, in “Nontraditional Methods in Diffusion”, edited by G. E. Murch, H. K. Birnbaum and J. R. Cost (TMS, Warrendale, PA, 1984) p. 281.

    Google Scholar 

  7. R. Kikuchi,Prog. Theor. Phys. (Kyoto) Suppl. 35 (1966) 1.

    Google Scholar 

  8. H. Sato, in “Nontraditional Methods in Diffusion”, edited by G. E. Murch, H. K. Birnbaum and J. R. Cost (TMS, Warrendale, PA, 1984) p. 203.

    Google Scholar 

  9. R. Kikuchi,Phys. Rev. 81 (1951) 988.

    Google Scholar 

  10. T. Ishikawa, K. Wada, H. Sato andR. Kikuchi,ibid. A33 (1986) 4164.

    Google Scholar 

  11. R. Kikuchi, private communication (1989).

  12. H. Sato andR. Kikuchi,Phys. Rev. B28 (1983) 648.

    Google Scholar 

  13. H. Sato, S. A. Akbar andG. E. Murch, in “Diffusion in Solids: Recent Developments”, edited by M. A. Dayananda and G. E. Murch (TMS, 1985) p. 67.

  14. R. Kikuchi, T. Ishikawa andH. Sato,Physica 123A (1984) 227.

    Google Scholar 

  15. T. Ishikawa, S. A. Akbar, W. Zhu andH. Sato,J. Amer. Ceram. Soc. 71 (1988) 513.

    Google Scholar 

  16. S. A. Akbar, M. Kaburagi, H. Sato andR. Kikuchi,ibid. 70 (1987) 246.

    Google Scholar 

  17. S. A. Akbar andH. Sato, in “Oxidation of Metals and Related Mass Transport”, edited by M. A. Dayananda, S. J. Rothman and W. E. King (TMS, Warrendale, PA, 1987) p. 49.

    Google Scholar 

  18. S. A. Akbar, M. Kaburagi andH. Sato,J. Phys. Chem. Solids 48 (1987) 579.

    Google Scholar 

  19. K. Wada, A. Suzuki, H. Sato andR. Kikuchi,ibid. 46 (1985) 1195.

    Google Scholar 

  20. T. Ishikawa, H. Sato, R. Kikuchi, S. A. Akbar, W. Zhu andA. S. Datta, in preparation.

  21. H. Sato andR. Kikuchi,J. Chem. Phys. 55 (1971) 677.

    Google Scholar 

  22. R. Kikuchi andH. Sato,ibid. 55 (1971) 702.

    Google Scholar 

  23. H. Sato andR. Kikuchi, in “Superionic Conductors”, edited by G. D. Mahan and W. L. Roth (Plenum Press, New York, 1976) p. 135.

    Google Scholar 

  24. R. Kikuchi andH. Sato, in “Superionic Conductors”, edited by G. D. Mahan and W. L. Roth (Plenum Press, New York, 1976) p. 167.

    Google Scholar 

  25. H. Sato andR. Kikuchi,J. Physique 38 C7 (1977) 159.

    Google Scholar 

  26. H. Sato, in “Solid Electrolytes”, edited by S. Geller (Springer-Verlag, 1977) p. 3.

  27. H. Sato andR. Kikuchi, in “Fast Ion Transport in Solids”, edited by P. Vashista, J. N. Mundy and G. K. Shenoy (North Holland, Amsterdam, 1979) p. 337.

    Google Scholar 

  28. H. Sato andK. Gschwend,Phys. Rev. B22 (1980) 4626.

    Google Scholar 

  29. H. Sato,Solid State Ionics 5 (1981) 183.

    Google Scholar 

  30. A. Suzuki, H. Sato andR. Kikuchi,Phys. Rev. B29 (1984) 3550.

    Google Scholar 

  31. T. Ishikawa andH. Sato, in “Superionic Solids and Solid Electrolytes: Recent Trends”, edited by A. L. Laskar and S. Chandra (Academic Press, New York, 1989) p. 439.

    Google Scholar 

  32. R. Kikuchi andH. Sato,J. Chem. Phys. 51 (1969) 161.

    Google Scholar 

  33. Idem., ibid. 53 (1970) 2702.

    Google Scholar 

  34. Idem., ibid. 57 (1972) 4962.

    Google Scholar 

  35. H. Sato andR. Kikuchi, in “Mass Transport Phenomena in Ceramics, Materials Science Research”, edited by A. R. Cooper and A. H. Heuer (Plenum Press, New York, 1975) p. 149.

    Google Scholar 

  36. H. Sato, T. Ishikawa andR. Kikuchi,J. Phys. Chem. Solids 46 (1985) 1361.

    Google Scholar 

  37. T. Ishikawa, H. Sato, R. Kikuchi andS. A. Akbar,J. Amer. Ceram. Soc. 68 (1985) 1.

    Google Scholar 

  38. S. A. Akbar andH. Sato,J. Phys. Chem. Solids 50 (1989) 729.

    Google Scholar 

  39. H. Sato, A. Suzuki andR. Kikuchi,Solid State Ionics 9,10 (1983) 725.

    Google Scholar 

  40. H. Sato, K. Wada, A. Suzuki andS. A. Akbar,ibid. 18,19 (1986) 178.

    Google Scholar 

  41. H. Sato, S. A. Akbar andT. Ishii,ibid. 28–30 (1988) 138.

    Google Scholar 

  42. J-S. Choi, M. Sarikaya, I. A. Aksay andR. Kikuchi,Phys. Rev. B42 (1989) 4244.

    Google Scholar 

  43. H. Sato, K. Gschwend andR. Kikuchi,J. Physique 38 C7 (1977) 357.

    Google Scholar 

  44. K. Gschwend, H. Sato andR. Kikuchi,J. Chem. Phys. 69 (1978) 5006.

    Google Scholar 

  45. K. Gschwend, H. Sato, R. Kikuchi, H. Iwasaki andH. Maniwa,ibid. 71 (1979) 2844.

    Google Scholar 

  46. J. K. McCoy, R. Kikuchi, K. Gschwend andH. Sato,Phys. Rev. B25 (1982) 1734.

    Google Scholar 

  47. S. Fukuda, PhD thesis, University of Washington, Seattle, WA (1988).

    Google Scholar 

  48. K. Wada, M. Kaburagi, T. Uchida andR. Kikuchi,J. Stat. Phys. 53 (1988) 1081.

    Google Scholar 

  49. K. Wada, H. Tsuchinaga andT. Uchida, in “Dynamics of Ordering Processes in Condensed Matter”, edited by S. Komura and H. Furukawa (Plenum, New York, 1988) p. 29.

    Google Scholar 

  50. T. Uchida, F. Sato andK. Wada, “Kinetics of Crystal Growth on the SOS Model”, preprint (1990).

  51. H. Schmalzried, W. Laqua andP. L. Lin,Z. Naturforsch 34a (1978) 192.

    Google Scholar 

  52. H. Schmalzried andW. Laqua,Oxid. Metals 15 (1981) 339.

    Google Scholar 

  53. H. K. Bowen, in “Materials Science in Energy Technology”, edited by G. G. Libowitz and S. M. Whitingham (Academic Press, New York, 1979).

    Google Scholar 

  54. J. Mizusaki, W. R. Cannon andH. K. Bowen,J. Amer. Ceram. Soc. 63 (1980) 391.

    Google Scholar 

  55. M. N. Menon, S. M. Copley andB. A. Troesch,Acta Metall. 23 (1975) 199.

    Google Scholar 

  56. W. T. Petuskey andH. K. Bowen,J. Amer. Ceram. Soc. 64 (1981) 611.

    Google Scholar 

  57. G. E. Murch, in “Diffusion in Crystalline Solids”, edited by G. E. Murch and A. S. Nowick (Academic Press, 1984).

  58. G. E. Murch andJ. C. Dyre,CRC Crit. Rev. Solid State Mater. Sci. 15 (1989) 345.

    Google Scholar 

  59. S. A. Akbar,J. Mater. Sci. (1992) in press.

  60. T. Ishii, H. Sato andR. Kikuchi,Phys. Rev. B34 (1986) 8335.

    Google Scholar 

  61. J. O. Isard,J. Non-Cryst. Solids 1 (1969) 235.

    Google Scholar 

  62. D. E. Day,ibid. 21 (1976) 343.

    Google Scholar 

  63. J. A. Bruce, R. A. Howie andM. D. Ingram,Solid State Ionics 18,19 (1986) 1129.

    Google Scholar 

  64. L. M. Foster, M. P. Anderson, G. V. Chandrasekhar, G. Burns andR. B. Bradford,ibid. 5 (1981) 215.

    Google Scholar 

  65. M. P. Anderson andL. M. Foster,ibid. 5 (1981) 219.

    Google Scholar 

  66. J. L. Briant andG. C. Farrington,ibid. 5 (1981) 207.

    Google Scholar 

  67. J. A. Bruce andM. D. Ingram,ibid. 9,10 (1983) 717.

    Google Scholar 

  68. M. A. Dayananda andC. W. Kim,Metall. Trans. 10A (1979) 1333.

    Google Scholar 

  69. C. W. Kim andM. A. Dayananda,ibid. 14A (1983) 857.

    Google Scholar 

  70. M. A. Dayananda, in “Diffusion in Solids: Recent Developments”, edited by M. A. Dayananda and G. E. Murch (TMS, Warrendale, PA, 1985) p. 195.

    Google Scholar 

  71. H. Sato,JIM 32 (1991) 509.

    Google Scholar 

  72. Y. Okamura andA. R. Allnatt,Phil. Mag. A 54 (1986) 773.

    Google Scholar 

  73. L. K. Moleko, Y. Okamura andA. R. Allnatt,J. Chem. Phys. 88 (1988) 2706.

    Google Scholar 

  74. L. K. Moleko, A. R. Allnatt andE. L. Allnatt,Phil. Mag. A 59 (1989) 141.

    Google Scholar 

  75. A. D. Le Claire,J. Nucl. Mater. 69/70 (1978) 70.

    Google Scholar 

  76. G. E. Murch, “Atomic Diffusion Theory in Highly Defective Solids, Diffusion and Defects”, Monograph Series, No. 6, edited by Y. Adda, A. D. Le Claire, L. M. Slifkin and F. H. Wohlbier (Trans Tech., Aedermansdorf, 1980).

    Google Scholar 

  77. K. Wada, T. Ishikawa, H. Sato and R. Kikuchi,Phys. Rev. A33 (1986) 4171.

    Google Scholar 

  78. L. Zhang, M. Gurr andG. E. Murch, in “Ceramic Developments, Materials Science Forum”, Vols34–36 edited by C. C. Sorrell and B. Ben-Nissan (Trans Tech., Aedermansdorf, 1988) p. 807.

    Google Scholar 

  79. G. E. Murch andL. Zhang,J. Aust. Ceram. Soc. 25 (1989) 9.

    Google Scholar 

  80. L. Zhang andG. E. Murch,Phil. Mag. A62 (1990) 267.

    Google Scholar 

  81. G. E. Murch andL. Zhang, in “Diffusion in Materials”, Vol. 179, edited by A. L. Laskar, L. J. Bocquet, G. Brebeck and C. Monty, NATO ASI Series (Kluwer Academic, Boston, 1990) p. 251.

    Google Scholar 

  82. L. Zhang andG. E. Murch,Solid State Ionics (1991) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbar, S.A. The path probability method: An atomistic technique of diffusion. J Mater Sci 27, 3125–3132 (1992). https://doi.org/10.1007/BF01116002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01116002

Keywords

Navigation