Skip to main content
Log in

Enhanced Li+ binding energies of some azines: a molecular orbital study

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Hartree-Fock calculations with the 6–31G* basis have been performed to investigate the structure and Li+ binding energies of the complexes between Li+ and pyridine, diazines, triazines and tetrazines. Structures have been fully optimized at the 3–21G level. As for azole-Li+ and methyldiazole-Li+ complexes, a topological analysis of the Laplacian of the electronic charge density reveals that the azine-Li+ is a typical closed-shell interaction and that the stabilization of the complex is mainly electrostatic. BSSE is quite significant, specially for Li+-bridging complexes. The correlation between calculated Li+ binding energies and proton affinities follows two different linear relationships, one for those cases where Li+ is singly coordinated and a different one for those cases in which an additional three-membered ring is formed. The enhanced stability of these particular conformations explains why while polyazines are less basic than pyridine when the reference acid is a proton; pyridazine and 1,2,4 triazine are more basic than pyridine when the reference acid is Li+. The effect on Li+ binding energies of systematic nitrogen substitution roughly follows an additive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woodin RL, Beauchamp JL (1978) J Am Chem Soc 100:501

    Google Scholar 

  2. Corderman RR, Beauchamp JL (1976) J Am Chem Soc 98:3998

    Google Scholar 

  3. Cummings RL, Kebarle P (1978) Can J Chem 88:5927

    Google Scholar 

  4. Woodin RL, Houle FA, Goddard III WA (1976) Chem Phys 14:461

    Google Scholar 

  5. Dzidic I, Kebarle P (1970) J Phys Chem 74:1466

    Google Scholar 

  6. Sunner J, Kebarle P (1984) J Am Chem Soc 106:6135

    Google Scholar 

  7. Anvia F, Walsh S, Capon M, Taft RW, de Paz JLG, Catalan J: J Am Chem Soc, to be published

  8. Del Bene JE (1984) J Phys Chem 88:5927

    Google Scholar 

  9. Del Bene JE, Frisch MJ, Raghavachari K, Pople JA, Schleyer PvR (1983) J Phys Chem 87:73

    Google Scholar 

  10. Alcamí M, Mó O, Yáñez M (1989) J Phys Chem 93:3929

    Google Scholar 

  11. Alcamí M, Mó O, Yáñez M, Anvia F. Taft RW: J Phys Chem, to be published

  12. Kaim W (1983) Angew Chem Ind Ed Engl 22:171

    Google Scholar 

  13. Mó O, de Paz JLG, Yáñez M (1987) J Mol Struct Theochem 150:135

    Google Scholar 

  14. Catalán J, de Paz JLG, Yáñez M, Elguero J (1984) Chem Scripta 24:84

    Google Scholar 

  15. Mó O, de Paz JLG, Yáñez M (1986) J Phys Chem 90:5597

    Google Scholar 

  16. Miertus S, Kysel O (1975) Chem Phys Lett 35:531

    Google Scholar 

  17. Del Bene JE, Frisch MJ, Raghavachari K, Pople JA (1982) J Phys Chem 86:1529

    Google Scholar 

  18. Del Bene JE (1983) J Phys Chem 87:367

    Google Scholar 

  19. Ikuta S (1985) Chem Phys Lett 116:482

    Google Scholar 

  20. Ikuta S (1984) Chem Phys 108:441

    Google Scholar 

  21. Mó O, de Paz JLG, Yáñez M (1988) Theor Chim Acta 73:307

    Google Scholar 

  22. Pulay P (1977) Applications of electronic structure theory. In: Schaefer III HF (ed.) Plenum Press, New York, p 153; Murtagh BA, Sargent RWH (1972) Comp J 131:185; Schegel HB (1982) J Comp Chem 3:214

    Google Scholar 

  23. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Google Scholar 

  24. Ikuta S (1985) Chem Phys Lett 95:235

    Google Scholar 

  25. Kaufmann E, Schleyer PvR (1985) J Am Chem Soc 107:5560

    Google Scholar 

  26. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Google Scholar 

  27. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Google Scholar 

  28. Bader RFW, Essén H (1984) J Chem Phys 80:1943

    Google Scholar 

  29. Bader RFW, MacDougall PJ, Lau CDH (1984) J Am Chem Soc 106:1594

    Google Scholar 

  30. Wiberg KB, Bader RFW, Lau CDH (1987) J Am Chem Soc 109:985

    Google Scholar 

  31. Binkley JS, Witeside RA, Krishna R, Seeger R, De Frees DJ, Schlegel HB, Topiol S, Khan LR, Pople JA Program GAUSSIAN 80 Department of Chemistry, Carnegie Mellon University

  32. Del Bene JE (1986) J Comp Chem 7:259

    Google Scholar 

  33. Taft RW (1975) In: Caldin EF, Gold V (eds.) Proton transfer reactions. Wiley, New York

    Google Scholar 

  34. Taft RW (1983) Prog Phys Org Chem 14:247

    Google Scholar 

  35. Moyland CR, Brauman JI (1983) Annu Rev Phys Chem 34:187

    Google Scholar 

  36. Lias SG, Liebman GF, Levine RD (1984) J Phys Chem Ref Data 13:695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcamí, M., Mó, O., de Paz, J.J.G. et al. Enhanced Li+ binding energies of some azines: a molecular orbital study. Theoret. Chim. Acta 77, 1–15 (1990). https://doi.org/10.1007/BF01114648

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114648

Key words

Navigation