Skip to main content
Log in

Receptor-mediated model relating anticonvulsant effect to brain levels of camazepam in the presence of its active metabolites

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

In a displacement test using3H-diazepam as a radioligand, the in vitro affinities of metabolites of camazepam (CZ) for the benzodiazepine receptors were 1–50 times more potent than that of CZ. In contrast, only three metabolites (temazepam, oxazepam, and hydroxy CZ), as well as CZ itself, exhibited an in vivo affinity parallel to their ability to protect against pentylenetetrazole-induced clonic convulsion in rats. In addition, CZ and these active metabolites displaced the radioligand from their receptor sites in a concentration-dependent saturable manner, indicating the competitive bimolecular interaction of these molecules with their receptors. The percent anticonvulsant effect was a nonlinear, single-valued function of the in vivo percent displacement of specific3H-diazepam binding, independent of these displacers after i.v. dosing; this relationship could be approximated by the Hill equation. On the basis of these findings, a receptor-mediated model, including the Langmuir equation to describe the receptor binding-brain concentration relationship and the Hill equation to accommodate the anticonvulsant effect-receptor binding relationship, was constructed. This model was found to adequately relate the time course values of anticonvulsant effect and of brain levels of CZ and its active metabolites after oral administration. These results demonstrate that CZ and its active metabolites exert anticonvulsant effect by competitive binding to the benzodiazepine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Curry and R. Whelpton. Pharmacokinetics of closely related benzodiazepines.Br. J. Clin. Pharmacol. 8:15s-21s (1979).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. S. Garattini, E. Mussini, F. Marcucci, and A. Guaitani. In S. Garattini, E. Mussini, and L. O. Randall (eds.),The Benzodiazepines, Raven Press, New York, 1973, pp. 75–97.

    Google Scholar 

  3. A. Morino, A. Nakamura, K. Nakanishi, N. Tatewaki, and M. Sugiyama. Species differences in the disposition and metabolism of camazepam.Xenobiotica 15:1033–1043 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. A. Morino and M. Sugiyama. Relation between time courses of pharmacological effects and of plasma levels of camazepam and its active metabolites in rats.J. Pharmacobio-Dyn. 8:597–606 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. T. Shibuya, R. Field, Y. Watanabe, K. Sato, and B. Salafsky. Structure-affinity relationship between several new benzodiazepine derivatives and3H-diazepam receptor sites.Jpn. J. Pharmacol. 34:435–440 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. R. S. L. Chang and S. H. Snyder. Benzodiazepine receptors: Labeling in intact animals with3H-flunitrazepam.Eur. J. Pharmacol. 48:213–218 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. D. Mackay. In J. M. van Rossum (ed.),Kinetics of Drug Action, Springer, New York, 1977, pp. 255–321.

    Chapter  Google Scholar 

  8. M. Berman, S. Shahn, and M. F. Weiss. The routine fitting of kinetic data to models: A mathematical formalism for digital computers.Biophys. J. 2:275–287 (1962).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. M. Nielsen, C. Braestrup, and R. F. Squires. Evidence for a late evolutionary appearance of brain specific benzodiazepine receptors: An investigation of 18 vertebrate and 5 invertebrate species.Brain Res. 141:342–346 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. C. Braestrup and R. F. Squires. Pharmacological characterization of benzodiazepine receptors in the brain.Eur. J. Pharmcol. 48:263–270 (1978).

    Article  CAS  Google Scholar 

  11. A. S. Lippa, L. R. Meyerson, and B. Beer. Molecular substrates of anxiety: Clues from the heterogeneity of benzodiazepine receptors.Life Sci. 31:1409–1417 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. T. Mennini, S. Cotecchia, S. Caccia, and S. Garattini. Benzodiazepines: Relationship between pharmacological activity in the rat andin vivo receptor binding.Pharmacol. Biochem. Behav. 16:529–532 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. S. M. Paul, P. J. Syapin, B. A. Paugh, V. Moncada, and P. Skolnick. Correlation between benzodiazepine receptor occupation and anticonvulsant effects of diazepam.Nature 281:688–689 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Kinetics of receptor occupation and anticonvulsive effects of diazepam in rats.Drug Metab. Dispos. 13:102–106 (1985).

    CAS  PubMed  Google Scholar 

  15. W. D. Paton and D. R. Waud. The margin of safety of neuromuscular transmission.J. Physiol. 191:59–90 (1967).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. S. Caccia, G. Guiso, R. Samanin, and S. Garattini. Species differences in clobazam metabolism and antileptazol effect.J. Pharm. Pharmacol. 32:101–103 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. S. Ichimaru, Y. Kudo, Y. Kawakita, and O. Shimada. Phase 1 study of KTH-497, a new benzodiazepine derivative.Clin. Eval. 12:15–41 (1984).

    Google Scholar 

  18. S. Caccia, M. Ballabio, and S. Garattini. Relationship between camazepam,N-methyl-oxazepam and oxazepam brain concentrations and antileptazol effect in the rat.J. Pharm. Pharmacol. 33:185–187 (1980).

    Article  Google Scholar 

  19. A. d'Hollander and C. Delcroix. An analytical pharmacodynamic model for nondepolarizing neuromuscular blocking agents.J. Pharmacokin. Biopharm. 9:27–40 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morino, A., Sasaki, H., Mukai, H. et al. Receptor-mediated model relating anticonvulsant effect to brain levels of camazepam in the presence of its active metabolites. Journal of Pharmacokinetics and Biopharmaceutics 14, 309–321 (1986). https://doi.org/10.1007/BF01106709

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106709

Key words

Navigation