Skip to main content
Log in

On the numerical treatment of nonconvex energy problems of mechanics

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The present paper presents three numerical methods devised for the solution of hemivariational inequality problems. The theory of hemivariational inequalities appeared as a development of variational inequalities, namely an extension foregoing the assumption of convexity that is essentially connected to the latter. The methods that follow partly constitute extensions of methods applied for the numerical solution of variational inequalities. All three of them actually use the solution of a central convex subproblem as their kernel. The use of well established techniques for the solution of the convex subproblems makes up an effective, reliable and versatile family of numerical algorithms for large scale problems. The first one is based on the decomposition of the contigent cone of the (super)-potential of the problem into convex components. The second one uses an iterative scheme in order to approximate the hemivariational inequality problem with a sequence of variational inequality problems. The third one is based on the fact that nonconvexity in mechanics is closely related to irreversible effects that affect the Hessian matrix of the respective (super)-potential. All three methods are applied to solve the same problem and the obtained results are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Strang,Introduction to Applied Mathematics, Wellesley—Cambridge Press, Wellesley, Mass. 1986.

    Google Scholar 

  2. C.C. Baniotopoulos and P.D. Panagiotopoulos, ‘A hemivariational approach to the analysis of composite material structures’, inEngineering Applications of New Composites (S.A. Paipetis, G.G. Papanicolaou, eds.), Omega Publications, London, 1987.

    Google Scholar 

  3. R.I. Gilbert and R.F. Warner, ‘Tension stiffening in reinforced concrete slabs’,ASCE Jnl. Struct. Div. 104(12), 1885–1900 (1978).

    Google Scholar 

  4. J.J. Moreau, P.D. Panagiotopoulos and G. Strang (eds.),Topics in Nonsmooth Mechanics, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1988.

    Google Scholar 

  5. P.D. Panagiotopoulos, ‘Nonconvex energy functions. Hemivariational inequalities and substationarity principles’,Acta Mech. 42, 160–183 (1983).

    Google Scholar 

  6. P.D. Panagiotopoulos,Inequality Problems in Mechanics and Applications/Convex and Nonconvex Energy Functionals, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1985, Russian translation by MIR Publishers, Moscow, 1989.

    Google Scholar 

  7. P.D. Panagiotopoulos and E.K. Koltsakis, ‘Hemivariational inequalities for linear and nonlinear elastic materials’,Meccanica 22, 65–75 (1987).

    Google Scholar 

  8. P.D. Panagiotopoulos, ‘Nonconvex superpotentials and hemivariational inequalities in Quasi—differentiability in mechanics’, inNonsmooth Mechanics and Applications (J.J. Moreau and P.D. Panagiotopoulos eds.), CISM Lecture Notes 302, Springer Verlag, Wien—New York, 1988.

    Google Scholar 

  9. P.D. Panagiotopoulos, ‘Coercive and semicoercive hemivariational inequalities’,Nonlin. Anal. Theo. Meth. Appl.,16, 209–231 (1991).

    Google Scholar 

  10. M.M. Schwartz,Composite Materials Handbook, McGraw Hill, New York, 1984.

    Google Scholar 

  11. P.D. Panagiotopoulos, ‘Hemivariational inequalities and their applications’, inTopics in Nonsmooth Mechanics (J.J. Moreau, P.D. Panagiotopoulos and G. Strang eds.), Birkhäuser Verlag, Basel, 1988.

    Google Scholar 

  12. G. Duvaut and J.L. Lions,Les Inéquations en Méchanique et en Physique, Dunod, Paris, 1972.

    Google Scholar 

  13. R. Glowinski, J.L. Lions and R. Tremolieres, ‘Numerical Analysis of Variational Inequalities’Studies in Mathematics and its Applications 8, North-Holland, Amsterdam 1981.

    Google Scholar 

  14. J.J. Moreau, ‘Fonctionnelles sous — différentiates’C.R.Acad.Sc.Paris 257A, 4117–4119 (1963).

    Google Scholar 

  15. J.J. Moreau, ‘La notion de sur-potentiel et les liaisons unilatérales en élastostatique’,C.R.Acad.Sc. 267A, 954–957 (1968).

    Google Scholar 

  16. P.D. Panagiotopoulos: ‘Hemivariational Inequalities and their Applications to Mechanics and Engineering’, Springer Verlag, Wien—New York, 1993.

    Google Scholar 

  17. R. Fletcher,Practical Optimization Methods, 2nd Edn., John Wiley & Sons, N.York, 1987.

    Google Scholar 

  18. P.E. Gill, W. Murray and M.H. Wright,Practical Optimization, Academic Press, New York, 1981.

    Google Scholar 

  19. P.M. Pardalos and J.B. Rosen,Constrained Global Optimization/Algorithms and Applications, Lecture Notes in Computer Science 268, Springer Verlag, Berlin, 1987.

    Google Scholar 

  20. J.J. Strodiot and V.H. Nguyen, ‘On the numerical treatment of the inclusion O∈ ∂f(x)’, inTopics in Nonsmooth Mechanics (J.J. Moreau, P.D. Panagiotopoulos and G. Strang eds.), Birkhäuser Verlag, Basel, 1988.

    Google Scholar 

  21. P.D. Panagiotopoulos and E.K. Koltsakis, ‘Interlayer slip and delamination effect/A hemivariational approach’,Canad.Soc.Mech.Engr. 11, 43–52 (1987).

    Google Scholar 

  22. P.D. Panagiotopoulos and G.E. Stavroulakis, ‘The delamination effect in laminated von Karman plates under unilateral boundary conditions/A variational-hemivariational inequality approach’,J. Elast. 23, 69–96 (1990).

    Google Scholar 

  23. Z. Naniewicz and P.D. Panagiotopoulos,Mathematical theory of hemivariational inqualities and applications, Marcel Dekker, New York 1995.

    Google Scholar 

  24. Z. Naniewicz, On some nonconvex variational problems related to hemivariational inequalities,Nonlin. Anal., 87–100 (1989).

  25. Z. Naniewicz, On the existence of solutions to the continuum model of delamination,Nonl. Anal. Theory, Meth. Appl.,20 481–507 (1993).

    Google Scholar 

  26. M. Fremond, ‘Contact unilatéral avec adhérence: une théorie du premier gradient” inUnilateral Problems in Structural Analysis-2 (G. Del Pierro and F. Maceri eds.), CISM Courses and Lectures 304, 1987.

  27. M.A. Crisfield, ‘New solution procedures for linear and nonlinear finite element analysis’, inThe Mathematics of Finite Elements and Applications (J.R. Whiteman ed.) V. Academic Press, London, 1985.

    Google Scholar 

  28. M.A. Crisfield and J. Wills, ‘Solution strategies and softening materials’,Comp. Meth. Appl. Mech. Engr. 66, 267–289 (1988).

    Google Scholar 

  29. E. Riks, ‘The application of Newton's method to the problem of elastic stability’,J. Appl. Mech. 39, 1060–1066 (1972).

    Google Scholar 

  30. J.C.J. Schellekens and R. DeBorst, ‘Applications of linear and nonlinear fracture mechanics options to free edge delamination in laminated composites’,Heron, 36, 37–48 (1991).

    Google Scholar 

  31. G.E. Stavroulakis, ‘Convex decomposition for nonconvex energy problems in elastostatics and applications”Eur. J. Mech., A/Solids 12(1) 1–20 (1993).

    Google Scholar 

  32. E.S. Mistakidis and P.D. Panagiotopoulos, ‘Numerical treatment of the nonmonotone (zig-zag) friction and adhesive contact problems with debonding. Approximation by monotone subproblems’,Comp. & Struct. 47 33–46 (1993).

    Google Scholar 

  33. M.Ap. Tzaferopoulos, ‘On an efficient new numerical method for the frictional contact problem of structures with convex energy density’,Comp.& Struct. 48 (1) (1993) 87–106.

    Google Scholar 

  34. R.S. Womersley and R. Fletcher, ‘An algorithm for composite nonsmooth optimization problems',J. Optim. Theo. Appl. 48, 493–523 (1986).

    Google Scholar 

  35. F.H. Clarke,Optimization and Nonsmooth Analysis, John Wiley & Sons, N.York, 1983.

    Google Scholar 

  36. R.T. Rockafellar,Convex Analysis, Princeton Press, Princeton, 1970.

    Google Scholar 

  37. E.J. Bauman, Multilevel optimization techniques and application to trajectory decomposition in: C.T. Leondes, ed.,Advances in Control Systems, Vol.6 (Academic Press, New York, 1968)

    Google Scholar 

  38. M.A. Tzaferopoulos and P.D. Panagiotopoulos, Delamination of composites as a substationarity problem,Comp. Meth. Appl. Mech. Engr. 110 (1993) 63–85

    Google Scholar 

  39. E.S. Mistakidis and P.D. Panagiotopoulos, On the approximation of nonmonotone multivalued problems by monotone subproblems,Comput. Meth. Appl. Mech. Engrg 114 (1994) 55–76.

    Google Scholar 

  40. J.F. Toland, ‘A duality principle for nonconvex optimization and the calculus of variations’,Arch. Rat. Mech. Anal. 71 41–61 (1979).

    Google Scholar 

  41. G. Auchmuty, ‘Duality algorithms for nonconvex variational principles’,Numerical Functional Analysis and Optimization,10(3&4) 211–264, (1989).

    Google Scholar 

  42. Chen & Han,Plasticity for structural engineers, Springer Verlag N.Y. 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koltsakis, E.K., Mistakidis, E.S. & Tzaferopoulos, M.A. On the numerical treatment of nonconvex energy problems of mechanics. J Glob Optim 6, 427–448 (1995). https://doi.org/10.1007/BF01100087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01100087

Key words

Navigation