Skip to main content
Log in

Crystal structure and crystallographic properties of a Schröckingerite from Joachimsthal

Kristallstruktur und kristallographische Eigenschaften eines Schröckingerits von Joachimsthal

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

The crystal structure of a schröckingerite from Joachimsthal, NaCa3[UO2(CO3)3](SO4) F·10H2O, triclinic, space groupP1,a=9.634(1),b=9.635(1),c=14.391(2) Å, α-91.41(1), β=92.33(1), γ=120.26(1)°,V=1151 Å3,Z=2, has been determined by X-ray diffraction and refined toR=0.026 for 5451 reflections. The structure contains NaCa3[UO2(CO3)3] (SO4) F·6H2O layers built up from UO2(CO3) 4−3 anions, NaO3(H2O)3 octahedra, three kinds of CaO5F(H2O)2 polyhedra, Ca3F pyramids and Ca-bonded SO4 tetrahedra. These layers extend atz∼1/5 andz∼4/5 parallel to (001). They are linked parallel to c exclusively by hydrogen bonds, both directly as well as via interlayer H2O molecules. The structure shows a striking trigonal pseudosymmetry within the range 0.04<z<0.96. Atz∼0 these parts of the structure are dislocated relative to each other by a step of ∼1 Å parallel to [110]. Morphologic and optical properties of schröckingerite have been investigated in the light of the known crystal structure.

Zusammenfassung

Die Kristallstruktur eines Schröckingerits von Joachimsthal, NaCa3[UO2(CO3)3](SO4) F·10H2O, triklin, RaumgruppeP1,a=9,634(1),b=9,635(1),c=14,391(2) Å, α=91,41(1), β=92,33(1), γ=120,26(1)°,V=1151 Å3,Z=2, wurde mit Röntgenbeugung bestimmt und für 5451 Reflexe aufR=0.026 verfeinert. Die Kristallstruktur enthält NaCa3[UO2(CO3)3] (SO4)I·6H2O Schichten, die aus UO2(CO3) 4−3 . Anionen, NaO3(H2O)3-Oktaedern, drei Arten von CaO5F(H2O)2-Polyedern, Ca3 F-Pyramiden und an Ca gebundenen SO4-Tetraedern aufgebaut sind. Diese Schichten erstrecken sich inz∼1/5 undz∼4/5 parallel zu (001). Sie sind parallel zuc ausschließlich durch Wasserstoffbrücken verknüpft, und zwar sowohl direkt als auch indirekt durch zwischen den Schichten gelegene Wassermoleküle. Die Struktur zeigt im Bereich 0,04<z<0,96 eine ausgeprägte trigonale Pseudosymmetrie. Derartige Bereiche sind inz∼0 um etwa 1 Å parallel zu [110] stufenartig gegeneinander versetzt. Morphologische und optische Eigenschaften von Schröckingerit wurden im Licht der bekannten Kristallstruktur untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, A., Chung Chieh, Irish, D. E., Tong, J.P.K., 1980: An X-ray crystallographic, Raman, and infrared spectral study of crystalline potassium uranyl carbonate, K4UO2(CO3)3. Can. J. Chem.58, 1651–1658.

    Google Scholar 

  • Axelrod, J. M., Grimaldi, F. S., Milton, C., Murata, K. J., 1951: The uranium minerals from the Hillside Mine. Yavapai County, Arizona. Amer. Min.36, 1–22.

    Google Scholar 

  • Bloss, F. D., 1981: The spindle stage-principles and practise. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cejka, J., Urbanec, Z., 1980: Uranium secondary minerals in the collection of the National Museum in Prague. VI. Schröckingerit. Časopis Národního Muzea-řada přírodovědná149, 60–68. (In Czech.)

    Google Scholar 

  • Coda, A., Della Giusta, A., Tazzoli, V., 1981: The structure of synthetic andersonite, Na2Ca [UO2(CO3)3xH2O (x∼5.6). Acta Cryst.B37, 1496–1500.

    Google Scholar 

  • Einspahr, H., Bugg, C. E., 1980: The geometry of calcium-water interactions in crystalline hydrates. Acta Cryst.B36, 264–271.

    Google Scholar 

  • Frondel, C., 1958: Systematic mineralogy of uranium and thorium, pp. 121–126. U.S. Geological Survey Bulletin 1064, Washington: U.S. Govt. Print. Office.

    Google Scholar 

  • Graziani, R., Bombieri, G., Forsellini, E., 1972: Crystal structure of tetra-ammonium uranyl tricarbonate. J. Chem. Soc. Dalton Trans.1972, 2059–2061.

    Google Scholar 

  • Hauser, J., Wenk, H.-R., 1976: Optical properties of composite crystals (submicroscopic domains, exsolution lamellae, solid solutions). Z. Krist.143, 188–219.

    Google Scholar 

  • Hurlbut, C. S., Jr., 1954: Uranium minerals. XV. Schroeckingerite from Argentina and Utah. Amer. Min.39, 901–907.

    Google Scholar 

  • Jaffe, H. W., Sherwood, A. M., Peterson, M. J., 1948: New data on schroeckingerite. Amer. Min.33, 152–157.

    Google Scholar 

  • Mazzi, F., Rinaldi, F., 1961: La struttura cristallina del K3Na(UO2)(CO3)3. Period. Min.30, 1–20.

    Google Scholar 

  • Mereiter, K., 1982: The crystal structure of liebigite, Ca2UO2(CO3)3·∼11H2O. Tschermaks Min. Petr. Mitt.30, 277–288.

    Google Scholar 

  • Mereiter, K., 1983: The crystal structure of schroeckingerite, NaCa3UO2(CO3)3SO4F·10H2O. Eighth European Cryst. Meeting, Liege, Belgium 1983, Abstracts p. 108.

  • —, 1984: The crystal structure of albrechtschraufite, MgCa4F2(UO2)2(CO3)6·17H2O. Acta Cryst.A40, Supplement, C-247.

    Google Scholar 

  • —,Preisinger, A., 1984: Bestimmung der optischen Orientierung mittels Spindeltisch und Röntgen-Vierkreisdiffraktometer. Fortschr. Min.62, Beiheft 1, 53.

    Google Scholar 

  • Novacek, R., 1939: The identity of dakeite and schroeckingerite. Amer. Min.24, 317–323.

    Google Scholar 

  • Palache, C., Berman, H., Frondel, C., 1951: Dana's System of Mineralogy, 7th ed., Vol. 1, pp. 1–15, New York and London: Wiley and Chapman.

    Google Scholar 

  • Ross, V., 1955: Studies of uranium minerals (XVII). Synthetic schröckingerite. Amer. Min.40, 515–519.

    Google Scholar 

  • Schrauf, A., 1873: Schröckingerit, ein neues Mineral von Joachimsthal. Tschermaks Min. Petr. Mitt.3, 137–138.

    Google Scholar 

  • Shannon, R. D., Prewitt, C. T., 1969: Effective ionic radii in oxides and fluorides. Acta Cryst.B25, 925–946.

    Google Scholar 

  • Sheldrick, G. M., 1976: SHELX 76, program for crystal structure determination. Univ. of Cambridge.

  • Sheridan, D. M., Maxwell, C. H., Collier, J. T., 1962: Geology of the Lost Creek schroeckingerite deposits, Sweetwater County, Wyoming. U.S. Geol. Surv. Bull.1087-J, pp. 391–478.

    Google Scholar 

  • Smith, D. K., 1959. An X-ray crystallographic study of schroeckingerite and its dehydration product. Amer. Min.44, 1020–1025.

    Google Scholar 

  • Sudarsanan, K., Young, R. A., 1972: Structure of strontium hydroxide phosphate Sr5(PO4)3 (OH). Acta Cryst.B28, 3668–3670.

    Google Scholar 

  • —,Mackie, P. E., Young, R. A., 1972: Comparison of synthetic and mineral fluorapatite, Ca5(PO4)3F, in crystallographic detail. Mat. Res. Bull.7, 1331–1338.

    Google Scholar 

  • Walenta, K., 1972: Grimselit, ein neues Kalium-Natrium-Uranylkarbonat aus dem Grimselgebiet (Oberhasli, Kanton Bern, Schweiz). Schweiz. Min. Petr. Mitt.52, 93–108.

    Google Scholar 

  • Wuensch, B. J., 1972: Sulfur, crystal chemistry. In: Handbook of Geochemistry (Wedepohl, K. H., ed.). Berlin-Heidelberg-New York: Springer-Verlag.

    Google Scholar 

  • Zemann, J., 1981: Zur Stereochemie der Karbonate. Fortschr. Min.59, 95–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mereiter, K. Crystal structure and crystallographic properties of a Schröckingerite from Joachimsthal. TMPM Tschermaks Petr. Mitt. 35, 1–18 (1986). https://doi.org/10.1007/BF01081914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081914

Keywords

Navigation