Skip to main content
Log in

The MAP kinase cascade. Discovery of a new signal transduction pathway

  • Protein Phosphorylation in Signal Transduction
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Using biochemical techniques similar to those used by Krebs and Fischer in elucidating the cAMP kinase cascade, a protein kinase cascade has been found that represents a new pathway for signal transduction. This pathway is activated in almost all cells that have been examined by many different growth and differentiations factors suggesting control of different cell responses. At this writing, four tiers of growth factor regulated kinases, each tier represented by more than one enzyme, have been reconstitutedin vitro to form the MAP kinase cascade. Preliminary findings suggesting multiple feedback or feedforward regulation of several components in the cascade predict higher complexity than a simple linear pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krebs EG: The enzymology of control by phosphorylation. In: PD Boyer, EG Krebs (eds) The Enzymes. Academic Press, Orlando 17: 3–20, 1986

    Google Scholar 

  2. Denton RM: Early events in insulin action. In: P Greengard, GA Robinson (eds) Adv. Cyclic Nucleotide and Protein Phosphorylation Res. Raven Press, New York 29: 293–341, 1986

    Google Scholar 

  3. Gressner AM, Wool IG: The phosphorylation of liver ribosomal proteinsin vivo. Evidence that only a single small subunit protein (S6) is phosphorylated. J Biol Chem 249: 6917–6925, 1974

    PubMed  Google Scholar 

  4. Gressner AM, Wool IG: The effect of experimental diabetes and insulin on phosphorylation, of rat liver ribosomal protein S6. Nature 259: 148–150, 1976

    PubMed  Google Scholar 

  5. Thomas G, Seigmann M, Gordon J: Multiple phosphorylation of ribosomal protein S6 during transition of quiescent 3T3 cells into early G1, and cellular compartmentalization of the phosphate donor. Proc Natl Acad Sci USA 76: 3952–3956, 1979

    PubMed  Google Scholar 

  6. Nielsen PJ, Thomas G, Maller JL: Increased phosphorylation of ribosomal protein S6 during meiotic maturation. Proc Natl Acad Sci USA 79: 2937–2941, 1982

    PubMed  Google Scholar 

  7. Novak-Hofer I, Thomas G: Epidermal growth factor-mediated activation of an S6 kinase in Swiss mouse 3T3 cells. J Biol Chem 260: 10314–10319, 1985

    PubMed  Google Scholar 

  8. Tabarini D, Heinrich J, Rosen OM: Activation of S6 kinase activity in 3T3-L1 cells by insulin and phorbol ester. Proc Natl Acad Sci USA 82: 4369–4373, 1985

    PubMed  Google Scholar 

  9. Erikson E, Maller JL: Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J Biol Chem 261: 350–356, 1986

    PubMed  Google Scholar 

  10. Cobb MH: An insulin-stimulated ribosomal protein S6 kinase in 3T3-L1 cells. J Biol Chem 261: 12994–12999, 1986

    PubMed  Google Scholar 

  11. Ballou LM, Jenö P, Thomas G: Protein phosphatase 2A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem 263: 1188–1194, 1988

    PubMed  Google Scholar 

  12. Erikson Rl: Structure, expression and regulation of protein kinases involved in the phosphorylation of ribosomal protein S6. J Biol Chem 266: 6007–6010, 1991

    PubMed  Google Scholar 

  13. Price DJ, Nemenoff RA, Avruch J: Purification of a hepatic S6 kinase from cycloheximide-treated rats. J Biol Chem 264: 13825–13833, 1989

    PubMed  Google Scholar 

  14. Jenö P, Jaggi N, Luther H, Seigmann M, Thomas G: Purification and characterization of a 40S ribosomal protein S6 kinase from vanadate-stimulated Swiss 3T3 cells. J Biol Chem 264: 1293–1297, 1989

    PubMed  Google Scholar 

  15. Erikson E, Maller JL: Purification and characterization of ribosomal protein S6 kinase I from Xenopus eggs. J Biol Chem 266: 5249–5255, 1991

    PubMed  Google Scholar 

  16. Gregory JS, Boulton TG, Sang BC, Cobb MH: An insulin-stimulated ribosomal protein S6 kinase from rabbit liver. J Biol Chem 264: 18397–18401, 1989

    PubMed  Google Scholar 

  17. Wettenhall REH, Erikson E, Maller JL: Ordered multisite phosphorylation of ribosomal protein S6 by S6 kinase II. J Biol Chem 267: 9021–9027, 1992

    PubMed  Google Scholar 

  18. Jones SW, Erikson E, Blenis J, Maller JL, Erikson RL: A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kianses. Proc Natl Acad Sci USA 85: 3377–3381, 1988

    PubMed  Google Scholar 

  19. Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J: Molecular structure of a major insulin/mitogen-activated 70kDa S6 protein kinase. Proc Natl Acad Sci USA 87: 8550–8554, 1990

    PubMed  Google Scholar 

  20. Kozma SC, Ferrari S, Bassand P, Seigmann M, Totty N, Thomas G: Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc Natl Acad Sci USA 87: 7365–7369, 1990

    PubMed  Google Scholar 

  21. Chen RH, Blenis J: Identification of Xenopus S6 protein kinase homologs (pp90rsk) in somatic cells: phosphorylation and activation during initiation of cell proliferation. Mol Cell Biol 10: 3204–3215, 1990

    PubMed  Google Scholar 

  22. Flotow H, Thomas G: Substrate recognition determinants of the mitogen-activated 70K S6 kinase from rat liver. J Biol Chem 267: 3074–3078, 1992

    PubMed  Google Scholar 

  23. Erikson E, Maller JL: Substrate specificity of ribosomal protein S6 kinase II from Xenopus eggs. Second Messengers Phospho-proteins 12: 135–143, 1988

    Google Scholar 

  24. Ahn NG, Weiel JE, Chan CP, Krebs EG: Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. J Biol Chem 265: 11487–11494, 1990

    PubMed  Google Scholar 

  25. Sturgill TW, Ray LB, Erikson E, Maller JL: Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal S6 kinase II. Nature 334: 715–718, 1988

    PubMed  Google Scholar 

  26. Erikson E, Maller JL:In vivo phosphorylation and activation of ribosomal protein S6 kinases during Xenopus oocyte maturation. J Biol Chem 264: 13711–13717, 1989

    PubMed  Google Scholar 

  27. Ballou LM, Seigmann M, Thomas G: S6 kinase in quiescent Swiss mouse 3T3 cells is activated by phosphorylation in response to serum treatment. Proc Natl Acad Sci USA 85: 7154–7158, 1988

    PubMed  Google Scholar 

  28. Ray LB, Sturgill TW: Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2in vitro. Proc Natl Acad Sci USA 84: 1502–1506, 1987

    PubMed  Google Scholar 

  29. Hoshi M, Nishida E, Sakai H: Activation of a Ca2+-inhibitable protein kinase that phosphorylates microtubule-associated protein 2in vitro by growth factors, phorbol esters, and serum in quiescent cultured human fibroblasts. J Biol Chem 263: 5396–5401, 1988

    PubMed  Google Scholar 

  30. Pelech SL, Tombes RM, Meijer L, Krebs EG: Activation of myelin basic protein kinases during echinoderm oocyte maturation and egg fertilization. Dev Biol 130: 28–36, 1988

    PubMed  Google Scholar 

  31. Cicirelli MF, Pelech SL, Krebs EG: Activation of multiple protein kinases during the burst in protein phosphorylation that precedes the first meiotic cell division in Xenopus oocytes. J Biol Chem 263: 2009–2019, 1988

    PubMed  Google Scholar 

  32. Cobb MH, Robbins DJ, Boulton TG: ERKs, extracellular signal-regulated MAP2 kinases. Curr Op Cell Biol 3: 1025–1032, 1991

    PubMed  Google Scholar 

  33. Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH: An insulin-stimulated protein kinase homologous to yeast kinases involved in pheromone-regulated cell cycle control. Science 249: 64–67, 1990

    PubMed  Google Scholar 

  34. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675, 1991

    PubMed  Google Scholar 

  35. Boulton TG, Cobb MH: Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regulation 2: 357–371, 1991

    PubMed  Google Scholar 

  36. Ahn NG, Krebs EG: Evidence for an epidermal growth factor-stimulated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinasesin vitro. J Biol Chem 265: 11487–11494, 1990

    PubMed  Google Scholar 

  37. Ballou LM, Luther H, Thomas G: MAP2 kinase and 70K S6 kinase lie on distinct signalling pathways. Nature 349: 348–350, 1991

    PubMed  Google Scholar 

  38. Chung JK, Kuo CJ, Crabtree GR, Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of an signalling by the 70kD S6 protein kinases. Cell69: 1227–1236, 1992

    PubMed  Google Scholar 

  39. Calvo V, Crews CM, Vik TA, Bierer BE; Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proc Natl Acad Sci USA 89: 7571–7575, 1992

    PubMed  Google Scholar 

  40. Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE: Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257: 973–976, 1992

    PubMed  Google Scholar 

  41. Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers SJ, Marshall C, Cohen P: MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J 11: 3985–3994, 1992

    PubMed  Google Scholar 

  42. Ray LB, Sturgill TW: Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threoninein vivo. Proc Natl Acad Sci USA 85: 3753–3757, 1988

    PubMed  Google Scholar 

  43. Cooper JA, Bowen-Pope DF, Raines E, Ross R, Hunter T: Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31: 263–273, 1982

    PubMed  Google Scholar 

  44. Rossomando AJ, Payne DM, Weber MJ, Sturgill TW: Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci USA 86: 6940–6943, 1989

    PubMed  Google Scholar 

  45. Anderson NG, Maller JL, Tonks NK, Sturgill TW: Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343: 651–653, 1990

    PubMed  Google Scholar 

  46. Payne DM, Rossomando AJ, Martino P, Erickson AK, Her J-H, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW: Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10: 885–892, 1991

    PubMed  Google Scholar 

  47. Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM: Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 407–414, 1991

    PubMed  Google Scholar 

  48. Knighton DR, Zheng J, Ten Eyck LF, Xuong NH, Taylor SS, Sowadski JM: Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:414–420, 1991

    PubMed  Google Scholar 

  49. Robbins DJ, Zhen E, Owaki H, Vanderbilt CA, Ebert D, Geppert TD, Cobb MH: Regulation and properties of extracellular signal-regulated protein kinases 1 and 2in vitro. J Biol Chem 268: 5097–5106, 1993

    PubMed  Google Scholar 

  50. Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK, Krebs EG: Multiple components in an epidermal growth factor-stimulated protein kinase cascade.In vitro activation of a myelin basic protein/microtubule associated protein 2 kinase. J Biol Chem 266: 4220–4227, 1991

    PubMed  Google Scholar 

  51. Gomez N, Cohen P: Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 351: 69–72, 1991

    PubMed  Google Scholar 

  52. Seger R, Ahn NG, Posada J, Munar ES, Jensen AJ, Cooper JA, Cobb MH, Krebs EG: Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 267: 14373–14381, 1992

    PubMed  Google Scholar 

  53. Matsuda S, Kosako H, Takenaka K, Moriyama K, Sakai H, Akiyama T, Gotoh Y, Nishida E: Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 11: 973–982, 1992

    PubMed  Google Scholar 

  54. Posada J, Cooper JA: Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science 255: 212–215, 1992

    PubMed  Google Scholar 

  55. Rossomando A, Wu J, Weber MJ, Sturgill TW: The phorbol ester-dependent activator of the mitogen-activated protein kinase p42mapk is a kinase with specificity for the threonine and tyrosine regulatory sites. Proc Natl Acad Sci USA 89: 5221–5225,1992

    PubMed  Google Scholar 

  56. Crews CM, Erikson RL: Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the ERK-1 gene product: relationship to the fission yeast byr1 gene product. Proc Natl Acad Sci USA 89: 8205–8209, 1992

    PubMed  Google Scholar 

  57. L'Allemain G, Her J-H, Wu J, Sturgill TW, Weber MJ: Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase. Mol Cell Biol 12: 2222–2229, 1992

    PubMed  Google Scholar 

  58. Nakielny S, Cohen P, Wu J, Sturgill T: MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. EMBO J 11: 2123–2129, 1992

    PubMed  Google Scholar 

  59. Ahn NG, Seger R, Krebs EG: The mitogen-activated protein kinase activator. Curr Op Cell Biol 4: 992–999, 1992

    PubMed  Google Scholar 

  60. Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlien RL, Cobb MH, Krebs EG: Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc Natl Acad Sci USA 88: 6142–6146, 1991

    PubMed  Google Scholar 

  61. Wu J, Rossomando AJ, Her JH, Del Vecchio R, Weber MJ, Sturgill TW: Autophosphorylationin vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine. Proc Natl Acad Sci USA 88: 9508–9512, 1991

    PubMed  Google Scholar 

  62. Crews CM, Alessandrini AA, Erikson RL: Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine. Proc Natl Acad Sci USA 88: 8845–8849, 1991

    PubMed  Google Scholar 

  63. Lindberg RA, Quinn AM, Hunter T: Dual specificity protein kinases: will any hydroxyl do? Trends Biochem Sci 17: 114–119, 1991

    Google Scholar 

  64. Crews C, Allessandrini AA, Erikson RL: The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480, 1992

    PubMed  Google Scholar 

  65. Ashworth A, Nakielny S, Cohen P, Marshall C: The amino acid sequence of a mammalian MAP kinase kinase. Oncogene 7: 2555–2556, 1992

    PubMed  Google Scholar 

  66. Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS, Ericsson L, Harrylock M, Jensen AM, Krebs EG: Human T-cell MAP kinase kinases are related to yeast signal transduction kinases. J Biol Chem 267: 25628–25631, 1992

    PubMed  Google Scholar 

  67. Wu J, Harrison JK, Vincent LA, Haystead C, Haystead T, Michel H, Hunt DF, Lynch KR, Sturgill TW: Molecular structure of a protein-tyrosine/threonine kinase activating p42 mitogen-activated protein (MAP) kinase: MAP kinase kinase. Proc Natl Acad Sci USA 90: 173–177, 1993

    PubMed  Google Scholar 

  68. Kosako H, Nishida E, Gotoh Y: cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J 12: 787–794, 1993

    PubMed  Google Scholar 

  69. Teague MA, Chaleff DT, Errede B: Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proc Natl Acad Sci USA 83: 7371–7375, 1986

    PubMed  Google Scholar 

  70. Nadin-Davis SA, Nasim A: A gene which encodes a predicted protein kinase can restore some functions of the ras gene in fission yeast. EMBO J 7: 985–993, 1988

    PubMed  Google Scholar 

  71. Boguslawski G, Polazzi JO: Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases. Proc Natl Acad Sci USA 84: 5848–5852, 1987

    PubMed  Google Scholar 

  72. Warbrick E, Fantes PA: The wis1 protein kinase is a dosage-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J 10: 4291–4299, 1991

    PubMed  Google Scholar 

  73. Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    PubMed  Google Scholar 

  74. Neiman AM, Stevenson BJ, Xu HP, Sprague GF, Herskowitz I, Wigler M, Marcus S: Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukarytoc organisms. Mol Biol Cell 4: 107–120, 1993

    PubMed  Google Scholar 

  75. Kosako H, Gotoh Y, Matsuda S, Ishikawa M, Nishida E:Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J 11: 2903–2908, 1992

    PubMed  Google Scholar 

  76. Ahn NG, Campbell JS, Seger R, Jensen AL, Graves LM, Krebs EG: Metabolic labeling of mitogen-activated protein kinase kinase in A431 cells demonstrates phosphorylation on serine and threonine residues. Proc Natl Acad Sci USA 90: 5143–5147, 1993

    PubMed  Google Scholar 

  77. Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358: 417–421, 1992

    PubMed  Google Scholar 

  78. Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-raf in NIH 3T3 cells andin vitro. Science 257: 1404–1406, 1992

    PubMed  Google Scholar 

  79. Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ: Activation of the MAP kinase pathway by the protein kianse raf. Cell71: 335–342, 1992

    PubMed  Google Scholar 

  80. Li P, Wood K, Mamon H, Haser W, Roberts T: Raf-1: a kinase currently without a cause but not lacking in effects. Cell 64: 479–482, 1991

    PubMed  Google Scholar 

  81. Baccarini M, Sabatini DM, App H, Rapp UR, Stanley ER: Colony stimulating factor-1 (CSF-1) stimulates temperature dependent phosphorylation and activation of the RAF-1 protooncogene product. EMBO J 9: 3649–3657, 1990

    PubMed  Google Scholar 

  82. Morrison DK, Kaplan DR, Rapp U, Roberts TM: Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci USA 85: 8855–8859, 1988

    PubMed  Google Scholar 

  83. Anderson NG, Li P, Marsden LA, William N, Roberts TM, Sturgill TW: Raf-1 is a potential substrate for mitogen-activated protein kinasein vivo. Biochem J277: 573–576, 1991

    PubMed  Google Scholar 

  84. Lee R, Rapp UR, Blackshear PJ: Evidence for one or more raf-1 kinase kinases activated by insulin and polypeptide growth factors. J Biol Chem 266: 10351–10357, 1991

    PubMed  Google Scholar 

  85. Lee R, Cobb MH, Blackshear PJ: Evidence that extracellular signal-regulated kinases are the insulin-activated raf-1 kinase kinases. J Biol Chem 267: 1088–1092, 1992

    PubMed  Google Scholar 

  86. Errede B, Levin DE: A conserved kinase cascade for MAP kinase activation in yeast. Curr Op Cell Biol 5: 254–260, 1993

    PubMed  Google Scholar 

  87. Zhou Z, Gartner A, Cade R, Ammerer G, Errede G: Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol Cell Biol 13: 2069–2080, 1993

    PubMed  Google Scholar 

  88. Wang Y, Xu HP, Riggs M, Rodgers L, Wigler M: byr2, a Schizosaccharomyces pombe gene encoding a protein kinase capable of partial suppression of the ras1 mutant phenotype. Mol Cell Biol 11: 3554–3563, 1991

    PubMed  Google Scholar 

  89. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and raf. Science 260: 315–319, 1993

    PubMed  Google Scholar 

  90. Maller JL: Xenopus oocytes and the biochemistry of cell division. Biochemistry 29: 3157–3166, 1990

    PubMed  Google Scholar 

  91. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF: Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335: 519–525, 1988

    PubMed  Google Scholar 

  92. Posada J, Yew N, Ahn NG, Vande Woude GF, Cooper JA: Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinasein vitro. Mol Cell Biol 13: 2546–2553, 1993

    PubMed  Google Scholar 

  93. Yew N, Mellini ML, Vande Woude GF: Meiotic initiation by the mos protein in Xenopus. Nature 355: 649–652, 1992

    PubMed  Google Scholar 

  94. Nebreda AR, Porras A, Santos E: p21ras-induced meiotic maturation of Xenopus oocytes in the absence of protein synthesis: MPF activation is preceded by activation of MAP and S6 kinases. Oncogene 8: 467–477, 1993

    PubMed  Google Scholar 

  95. Matsuda S, Gotoh Y, Nishida E: Phosphorylation of Xenopus mitogen-activated protein (MAP) kinase kinase by MAP kinase kinase kinase and MAP kinase. J Biol Chem 268: 3277–3281, 1993

    PubMed  Google Scholar 

  96. Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS: Ras is essential for nerve growth factor- and phorbol esterinduced tyrosine phosphorylation of MAP kinases. Cell 68: 1031–1040, 1992

    PubMed  Google Scholar 

  97. Wood KW, Sarnecki C, Roberts TM, Blenis J: Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1 and RSK. Cell 68: 1041–1050, 1992

    PubMed  Google Scholar 

  98. de Vries-Smits AMM, Burgering BMT, Leevers SJ, Marshall CJ, Bos JL: Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature 357: 602–604, 1992

    PubMed  Google Scholar 

  99. Robbins DJ, Cheng M, Zhen E, Vanderbilt CA, Feig LA, Cobb MH: Evidence for a ras-dependent extracellular signal regulated protein kinase (ERK) cascade. Proc Natl Acad Sci USA 89: 6924–6928, 1992

    PubMed  Google Scholar 

  100. Leevers S, Marshall CJ: Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J 11: 569–574, 1992

    PubMed  Google Scholar 

  101. Pomerance M, Schweighoffer F, Tocque B, Pierre M: Stimulation of mitogen-activated protein kinase by oncogenic ras p21 in Xenopus oocytes. J Biol Chem 267: 16155–16160, 1992

    PubMed  Google Scholar 

  102. Hattori S, Fukuda M, Yamashita T, Nakamura S, Gotoh Y, Nishida E: Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system. J Biol Chem 267: 20346–20351, 1992

    PubMed  Google Scholar 

  103. Shibuya EK, Polverino AJ, Chang E, Wigler M, Ruderman JV: Oncogenic ras triggers the activation of 42 kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc Natl Acad Sci USA 89: 9831–9835, 1992

    PubMed  Google Scholar 

  104. Itoh T, Kaibuchi K, Matsuda T, Yamamoto T, Matusuura Y, Maeda A, Shimizu K, Takai Y: A protein factor for ras p21-dependent activation of mitogen-activated protein (MAP) kinase through MAP kinase kinase. Proc Natl Acad Sci USA 90: 975–979, 1993

    PubMed  Google Scholar 

  105. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674, 1991

    PubMed  Google Scholar 

  106. Gille H, Sharrocks AD, Shaw PE: Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358: 414–417, 1992

    PubMed  Google Scholar 

  107. Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ: Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. J Biol Chem 266: 15277–15285, 1991

    PubMed  Google Scholar 

  108. Cheng JT, Cobb MH, Baer R: Phosphorylation of the TAL1 oncoprotein by the extracellular-signal regulated protein kinase ERK1. Mol Cell Biol 13: 801–808, 1993

    PubMed  Google Scholar 

  109. Chen T-H, Sarnecki C, Blenis J: Nuclear localization and regulation of Erk- and Rsk-encoded protein kinases. Mol Cell Biol 12: 915–927, 1992

    PubMed  Google Scholar 

  110. Sanghera JS, Peter M, Nigg EA, Pelech SL: Immunological characterization of avian MAP kinases: evidence for nuclear localization. Mol Biol Cell 3: 775–787, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, N.G. The MAP kinase cascade. Discovery of a new signal transduction pathway. Mol Cell Biochem 127, 201–209 (1993). https://doi.org/10.1007/BF01076771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076771

Key words

Navigation