Skip to main content
Log in

The determination of essential clearance, volume, and residence time parameters of recirculating metabolic systems: The reversible metabolism of methylprednisolone and methylprednisone in rabbits

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Methods based on moment analysis are described which permit the calculation of the fundamental parameters of reversible drug/metabolite systems. These parameters include the four essential clearances of reversible and irreversible elimination, the central and steady-state distributional volumes, and the sojourn times or turnover rates of the metabolic pair. Additional parameters unique to interconversion systems are developed which describe the properties of metabolic entrapment (“recycled fraction”), conservation (“exposure enhancement”), and equilibrium resulting from reversible metabolism (“Percent parent drug at steady-state”). Parameters obtained by these methods are compared to those generated by conventional mammillary analysis. The influence of perturbation of essential parameters on the response of mammillary descriptors and the state of the interconversion system are simulated. The interconversion analysis is applied to disposition data for methylprednisolone and methylprednisone in the rabbit. Mammillary methods underestimate the metabolic clearance of these two steroids by 30%, while steroid turnover is underestimated by 100%. The steady-state volumes of distribution of the two steroids are overestimated by 10 and 61%. Additional literature data for disposition of several corticosteroids in various species and disease states are reanalyzed. Examination of cortisol/cortisone disposition in thyroid disorders reveals that mammillary methods detect the overall acceleration of steroid elimination in hyperthyroidism, but fail to reveal a 50% reduction in metabolite backconversion and decreased metabolic cycling. These moment analysis methods should facilitate characterization of the pharmacokinetics of the increasing array of reversible drug/metabolite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. E. Duggan, K. F. Hooke, and S. S. Hwang. Kinetics and disposition of sulindac and metabolites; relevance to sites and rates of bioactivation.Drug Metab. Dispos. 8:241–246 (1979).

    Google Scholar 

  2. A. Karim, J. Zagarella, J. Hribar, and M. Dooley. Spironolactone. I. Disposition and metabolism.Clin. Pharmacol. Ther. 19:158–169 (1976).

    CAS  PubMed  Google Scholar 

  3. R. Gelber, J. H. Peter, G. R. Gordon, A. J. Glazko, and L. Levy. The polymorphic acetylation of dapsone in man.Clin. Pharmacol. Ther. 12:225–237 (1971).

    CAS  PubMed  Google Scholar 

  4. T. B. Vree, Y. A. Hekster, and M. W. Tijuhuis, Metabolism of sulfonamides. In T. B. Vree and Y. A. Hekster (eds.),Pharmacokinetics of Sulfonamides Revisited, S. Karger, Basel, Switzerland, 1985, pp. 5–65.

    Google Scholar 

  5. G. M. Dupuy, K. D. Roberts, G. Bleau, and A. Chapdeaine. Sites ofin vivo extraction and interconversion of estradiol in the dog.Steroids 39:201–213 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. A. Vermeulen and S. Ando. Metabolic clearance rate and interconversion of androgens and the influence of free androgen fraction.J. Clin. Endocrinol. Metab. 48:320–326 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. R. K. Verbeeck. Glucuronidation and disposition of drug glucuronides in patients with renal failure.Drug Metab. Dispos. 10:87–89 (1982).

    CAS  PubMed  Google Scholar 

  8. J. Mann and E. Gurpide. Generalized rates of transfer in open systems of pools in the steady state.J. Clin. Endocr. 26:1346 (1966).

    Article  CAS  PubMed  Google Scholar 

  9. J. J. DiStefano. Concepts, properties, measurement, and computation of clearance rates of hormones and other substances in biological systems.Ann. Biomed. Eng. 4:302–319 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. J. H. Oppenheimer and E. Gurpide. Quantitation of the production, distribution, and interconversion of hormones. In L. J. Degroot (ed.),Endocrinology, Vol. 3, Grune and Stratton, New York, 1979, pp. 2029–2036.

    Google Scholar 

  11. J. G. Wagner, A. R. DiSanto, W. R. Gillespie, and K. S. Albert. Reversible metabolism and pharmacokinetics: Application to prednisone and prednisolone.Res. Commun. Chem. Pathol. Pharmacol. 32:387–405 (1981).

    CAS  PubMed  Google Scholar 

  12. J. Y. Park, M. Lanworthy, C. R. Behl, W. I. Higuchi. G. L. Flynn, and N. F. H. Ho. Vaginal drug absorption in the rhesus monkey: Bioavailability method and assessment of estrogens.Int. J. Pharm. 2:215–238 (1979).

    Article  CAS  Google Scholar 

  13. R. Horton and J. F. Tait. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone.J. Clin. Invest. 45:301–313 (1966).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. I. Z. Beitins, F. Bayard, I. G. Ances, A. Kowarski, and C. J. Migeon. The transplacental passage of prednisone and prednisolone in pregnancy near term.J. Pediat. 81:936–945 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. A. Dazord, J. Saez, and J. Bertrand. Metabolic clearance rates and interconversion of cortisol and cortisone.J. Clin. Endocrinol. Metab. 35:24–34 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. I. Z. Beitins, F. Bayard, I. G. Ances, A. Kowarski, and C. J. Migeon. The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term.J. Pediatr. Res. 7:509–519 (1973).

    Article  CAS  Google Scholar 

  17. G. J. Pepe, R. A. Ehrenkranz, and J. D. Townsley. The metabolic clearance rates and interconversion of cortisol and cortisone in pregnant and nonpregnant baboons.Endocrinology 99:597–601 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. M. Manin, C. Tournaire, and P. Delost. Measurement of the rate of secretion, peripheral metabolism and interconversion of cortisol and cortisone in adult conscious male guineapigs.Steroids 39:81–86 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. W. F. Ebling, S. J. Szefler, and W. J. Jusko. Methylprednisolone disposition in rabbits: Analysis, prodrug conversion, reversible metabolism, and comparison with man.Drug Metab. Dispos. 13:296–304 (1985).

    CAS  PubMed  Google Scholar 

  20. S. Hwang, K. C. Kwan, and K. S. Albert. A linear model of reversible metabolism and its application to bioavailability assessment.J. Pharmacokin. Biopharm. 9:693–709 (1981).

    Article  CAS  Google Scholar 

  21. C. M. Metzler, G. L. Elfring, and A. J. McEwen. NONLIN, a computer program for nonlinear least-squares regression.Biometrics 30:562 (1974).

    Article  Google Scholar 

  22. K. C. Yeh, and K. C. Kwan. A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation.J. Pharmacokin. Biopharm. 6:79–98 (1978).

    Article  CAS  Google Scholar 

  23. M. L. Rocci and W. J. Jusko. LAGRAN program for area and moments in pharmacokinetic analysis.Comp. Prog. Biomed. 16:203–216 (1983).

    Article  Google Scholar 

  24. W. J. Jusko. Guidelines for collection and analysis of pharmacokinetic data. In W. E. Evans, J. J. Schentag, and W. J. Jusko (eds.),Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring, 2nd ed., Applied Therapeutics, San Francisco, 1980, pp. 9–54.

    Google Scholar 

  25. S. J. Szefler, J. Q. Rose, E. G. Ellis, S. L. Spector, A. W. Green, and W. J. Jusko. The effect of troleandomycin on methylprednisolone elimination.J. Allergy Clin. Immunol. 66:447–451 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. M. L. Rocci and W. J. Jusko. Dose-dependent protein binding and disposition of prednisolone in rabbits.J. Pharm. Sci. 70:1201–1204 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. I. E. Bush, S. A. Hunter, and R. A. Meigs. Metabolism of 11-oxygenated steroids.Biochem. J. 107:239–258 (1968).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. G. M. Tomkins. Enzymatic metabolism of corticosteroids.Ann. N. Y. Acad. Sci. 82:836–853 (1959).

    Article  CAS  PubMed  Google Scholar 

  29. J. Kawamura, T. Hayakawa, and T. Tanimoto. Steroid-protein interaction: specificity of 20β-hydroxysteroid dehydrogenase.Chem. Pharm. Bull. 28:437–446 (1980).

    Article  PubMed  Google Scholar 

  30. R. O. Rechnagel. Adrenocortical steroid C-20-keto reductase.J. Biol. Chem. 227:273–284 (1957).

    Google Scholar 

  31. M. L. Rocci, S. J. Szefler, M. A. Acara, and W. J. Jusko. Prednisolone metabolism and excretion in the isolated perfused rat kidney.Drug Metab. Dispos. 9:171–182 (1981).

    Google Scholar 

  32. M. A. Lugg and T. E. Nicholas. The effect of dexamethasone on the activity of 11β-hydroxysteroid dehydrogenase in the foetal rabbit lung during the final stages of gestation.J. Pharm. Pharmacol. 305:587–589 (1978).

    Article  Google Scholar 

  33. J. Kolanowski, F. Corcelle-Cerf, and J. Lammerant. Cortisol uptake, release and conversion into cortisone by the heart muscle in dogs.J. Steroid Biochem. 14:773–781 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. R. Ghraf, U. Vetter, J. M. Zandveld, and H. Schriefers. Organ-specific ontogeneses of steroid hormone metabolizing activities in the rat.Acta Endocrinol. 79:192–201 (1975).

    CAS  PubMed  Google Scholar 

  35. F. M. Gannis, L. R. Axelrod, and L. L. Miller. The metabolism of hydrocortisone by the kidney tissuein vitro.J. Biol. Chem. 218:841–848 (1956).

    Google Scholar 

  36. A. Vermeulen and E. Caspi. Metabolism ofl-dehydrosteroids in man; II. Isolation of 20α- and 20β-hydroxy metabolites.J. Biol. Chem. 234:2295–2297 (1959).

    CAS  PubMed  Google Scholar 

  37. J. Q. Rose, A. M. Yurchak, and W. J. Jusko. Dose-dependent pharmacokinetics of prednisone and prednisolone in man.J. Pharmacokin. Biopharm. 9:389–417 (1981).

    Article  CAS  Google Scholar 

  38. S. J. Szefler, W. F. Ebling, J. W. Georgitis, and W. J. Jusko. Methylprednisolone versus prednisolone pharmacokinetics in relation to dose in adults.Eur. J. Clin. Pharmacol. 30:323–329 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. J. J. Ferry and J. G. Wagner. The nonlinear pharmacokinetics of prednisone and prednisolone. I. Theoretical.Biopharm. Drug Dispos. 7:91–101 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. N. Khalafallah and W. J. Jusko. Tissue distribution of prednisolone in the rabbit.J. Pharmacol. Exp. Ther. 229:719–725 (1984).

    CAS  PubMed  Google Scholar 

  41. S. M. El Dareer, R. F. Struck, V. M. White, L. B. Mellett, and D. L. Hill. Distribution and metabolism of prednisone in mice, dogs and monkeys.Cancer Treat. Rep. 61:1279–1289 (1977).

    PubMed  Google Scholar 

  42. K. B. Larson and D. L. Snyder. Measurement of relative blood flow, transit-time distributions and transport-model parameters by residue detection when radiotracer recirculates.J. Theor. Biol. 37:503–529 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grants GM 24211 and 5T32-GM 07145.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebling, W.F., Jusko, W.J. The determination of essential clearance, volume, and residence time parameters of recirculating metabolic systems: The reversible metabolism of methylprednisolone and methylprednisone in rabbits. Journal of Pharmacokinetics and Biopharmaceutics 14, 557–599 (1986). https://doi.org/10.1007/BF01067965

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067965

Key words

Navigation