Skip to main content
Log in

Decomposition of multivariate phenotypic means in multigroup genetic covariance structure analysis

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Observed differences in phenotypic means between groups such as parents and their offspring or male and female twins can be decomposed into genetic and environmental components. The decomposition is based on the assumption that the difference in phenotypic means is due to a difference in the location of the normal genetic and environmental distributions underlying the phenotypic individual differences. Differences between the groups in variance can be accommodated insofar as they are due to differences in unique variance or can be modeled using a scale parameter. The decomposition may be carried out in the standard analysis of genetic covariance structure using, for instance, LISREL. Illustrations are given using simulated data and twin data relating to blood pressure. Other possible applications are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boomsma, D. I., and Molenaar, P. C. M. (1987). The genetic analysis of repeated measures. I. Simplex models.Behav. Genet. 17:111–123.

    Google Scholar 

  • Boomsma, D. I., Molenaar, P. C. M., and Orlebeke, J. F. (1990). Estimation of individual genetic and environmental factor scores.Genet. Epidemiol. 7:83–91.

    Google Scholar 

  • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures.Br. J. Math. Stat. Psychol. 37:62–83.

    Google Scholar 

  • Dolan, C. V., Molenaar, P. C. M., and Boomsma, D. I. (1989). LISREL analysis of twin data with structured means.Behav. Genet. 17:51–62.

    Google Scholar 

  • Dolan, C. V., Molenaar, P. C. M., and Boomsma, D. I. (1991). Simultaneous genetic analysis of longitudinal means and covariance structure in the simplex model using twin data.Behav. Genet. 21:49–65.

    Google Scholar 

  • Eaves, L. J., Long, J., and Heath, A. C. (1986). A theory of developmental change in quantitative phenotypes applied to cognitive development.Behav. Genet. 16:143–162.

    Google Scholar 

  • Grossman, M., and Bohren, B. B. (1985). Logistic growth curve of chickens: Heritability of parameters.J. of Hered. 76:459–462.

    Google Scholar 

  • Heath, A. C., Eaves, L. J., and Martin, N. G. (1989). The genetic structure of personality. III. Multivariate genetic item analysis of the EPQ scales.Person. Individ. Diff. 10(8):877–888.

    Google Scholar 

  • Heath, A. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., and Fulker, D. W., (1989). Testing structural equation models for twin data using LISREL.Behav. Gen. 19:9–38.

    Google Scholar 

  • Hewitt, J. K. (1990). Changes in genetic control learning, development, and aging. In Hahn, M. E., Hewitt, J. K., Henderson, N. D., and Benno, R. H. (eds.),Developmental Behavior Genetics: Neural, Biometrical and Evolutionary Approaches, Oxford University Press, Oxford.

    Google Scholar 

  • Hewitt, J. K., Eaves, L. J., Mosteller, M., and Schieken, R. (1989). Can increases in mean heart rate during aerobic exercise be accounted for by scalar increments in the effects of genes that control individual differences.Behav. Genet. 19:763.

    Google Scholar 

  • Jöreskog, K. G. and Sörbom, D. (1986).PreLis: A Preprocessor for LISREL, Scientific Software, Mooresville, USA.

    Google Scholar 

  • Jöreskog, K. G., and Sörbom, D. (1988).LISREL VII: A Guide to the Program and Applications, SPSS, Chicago.

    Google Scholar 

  • Mardia, K. V. (1980). Tests of univarite and multivariate normality. In Krishnaiah, P. R. (ed.),Handbook of Statistics, Vol. 1, North-Holland Publishing Company, Amsterdam, pp. 279–320.

    Google Scholar 

  • Martin, N. G., and Eaves, L. J. (1977). The genetical analysis of covariance structures.Heredity 38:79–95.

    Google Scholar 

  • Mather, K., and Jinks, J. L. (1977).Introduction to Biometrical Genetics, Chapman and Hall, London.

    Google Scholar 

  • McArdle, J. J. (1986). Latent variable growth within behavior genetic models.Behav. Genet. 16:163–200.

    Google Scholar 

  • McArdle, J. J., and Goldsmith, H. H. (1984). Structural equation modeling applied to the twin design: Comparative multivariate models of the WAIS.Behav. Genet. 14:609.

    Google Scholar 

  • Muthén, B. (1989). Multi-group structural modelling with non-normal continuous variables.Br. J. Math. Stat. Psychol. 42:55–62.

    Google Scholar 

  • Royston, J. P. (1985). The distribution of skewness and kurtosis.Appl. Stat. 34(1):87–94.

    Google Scholar 

  • Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups.Br. J. Math. Stat. Psychol. 27:229–239.

    Google Scholar 

  • Sörbom, D. (1976). A statistical model for the measurement of change in true scores. In de Gruyter, D. N. M., and van der Kamp, L. J. T. (eds.),Advances in Psychological and Educational Measurement, J. Wiley and Sons, New York.

    Google Scholar 

  • Sörbom, D. (1978). An alternative to the methodology for analysis of covariance.Psychometrica 43:381–396.

    Google Scholar 

  • Vandenberg, S. G., and Falkner, F. (1965). Hereditary factors in human growth.Hum. Biol. 37:357–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolan, C.V., Molenaar, P.C.M. & Boomsma, D.I. Decomposition of multivariate phenotypic means in multigroup genetic covariance structure analysis. Behav Genet 22, 319–335 (1992). https://doi.org/10.1007/BF01066664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066664

Key Words

Navigation