Skip to main content
Log in

Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization

  • Original Papers
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    Voltage clamp hyperpolarization and depolarization elicited current records consistent with depletion and accumulation, respectively, of potassium in the extracellular clefts of cardiac Purkinje fibers. Hyperpolarization was shown to shift the reversal potential for the pacemaker current,i K 2, a measure ofE K , to more negative potentials. Upon depolarization, a slowly increasing outward current was observed. Analysis of the tail currents elicited by hyperpolarization revealed that a time-dependent change ing x could not explain the time-dependent outward current. However, the tail currents were consistent with a shift ofE K to more positive potentials during the depolarization.

  2. 2.

    Alteration in potassium driving force over time results in a time-dependenti 1 even though the underlying conductance is time-independent [29]. This timedependent current may contribute to the currents usually identified asi K 2 andi x .

  3. 3.

    The potential at whichi K 2 reverses direction is altered by the clamp program used to elicit it and is obscured by the superimposition of a time-dependent current due to depletion.

  4. 4.

    Records consistent with the extracellular cleft potassium concentration being less than that of the bulk phase in the quiescent fiber were obtained. However, an unequivocal interpretation of these current records could not be made.

  5. 5.

    These results suggest that conclusions based on the assumption that potassium driving force remains constant during a voltage clamp pulse may be in error. Thus, time-dependent currents cannot be assumed to result solely from time-dependent conductance changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelman, W. J., Jr., Palti, Y., Senft, J. P.: Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance. J. Membr. Biol.13, 387–410 (1973)

    Google Scholar 

  2. Adrian, R. H., Freygang, W. H., Jr.: The potassium and chloride conductance of frog muscle membranes. J. Physiol. (Lond.)163, 61–103 (1962)

    Google Scholar 

  3. Almers, W.: Potassium conductance change in skeletal muscle and the potassium concentration in the transverse tubules. J. Physiol. (Lond.)225, 33–56 (1972)

    Google Scholar 

  4. Baumgarten, C. M.: Does voltage clamp hyperpolarization deplete extracellular potassium? Pflügers Arch.359, R 130 (1975)

    Google Scholar 

  5. Baumgarten, C. M., Isenberg, G., McDonald, T. F., Ten Eick, R. E.: Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Experiments in sodiumfree bathing media. J. gen. Physiol. (in press, 1977)

  6. Carmeliet, E. E.: Chloride and potassium permeability in Purkinje fibers. In: The specialized tissues of the heart (A. Paes deCarvalho, W. C.DeMello, and B. F. Hoffman, eds.). Amsterdam: Elsevier 1961

    Google Scholar 

  7. Cleemann, L., Morad, M.: Extracellular potassium accumulation and inward-going potassium rectification in voltage clamped ventricular muscle. Science191, 90–92 (1976)

    Google Scholar 

  8. Deck, K. A., Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol.280, 63–80 (1964)

    Google Scholar 

  9. Deck, K. A., Kern, R., Trautwein, W.: Voltage clamp technique in mammalian cardiac fibers. Pflügers Arch. ges. Physiol.280, 50–62 (1964)

    Google Scholar 

  10. Dudel, J., Peper, K., Rudel, R., Trautwein, W.: The potassium component of membrane current in Purkinje fibers. Pflügers Arch. ges. Physiol.296, 308–327 (1967)

    Google Scholar 

  11. Eaton, D. C.: Potassium ion accumulation near pacemaking cells ofAplysia. J. Physiol. (Lond.)224, 421–440 (1972)

    Google Scholar 

  12. Frank, J. S., Langer, G. A.: The myocardial interstitum: Its structure and its role in ionic exchange. J. Cell Biol.60, 586–601 (1974)

    Google Scholar 

  13. Frankenhaeuser, B., Hodgkin, A. L.: The after effect of impulses in the giant nerve fibers ofLoligo. J. Physiol. (Lond.)131, 341–376 (1956)

    Google Scholar 

  14. Freygang, W. H., Jr., Goldstein, D. A., Hellam, D. C., Peachey, L. D.: The relationship between the late after-potential and the size of the transverse tubular system of frog muscle. J. gen. Physiol.48, 235–263 (1964)

    Google Scholar 

  15. Hall, A. E., Hutter, O. F., Noble, D.: Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J. Physiol. (Lond.)166, 225–240 (1963)

    Google Scholar 

  16. Hauswirth, O., Noble, D., Tsien, R. W.: The dependence of the plateau currents in cardiac Purkinje fibres on the interval between action potentials. J. Physiol. (Lond.)222, 27–49 (1972)

    Google Scholar 

  17. Hauswirth, O., Noble, D., Tsien, R. W.: Separation of the pacemaker and plateau components of delayed rectification in cardiac Purkinje fibers. J. Physiol. (Lond.)225, 211–235 (1972)

    Google Scholar 

  18. Hoffman, B. F., Suckling, E. E.: Effects of heart rate on cardiac membrane potentials and the unipolar electrogram. Amer. J. Physiol.179, 123–130 (1954)

    Google Scholar 

  19. Isenberg, G.: Cardiac Purkinje fibers: Cesium as a tool to block inward rectifying potassium currents. Pflügers Arch.365, 99–106 (1976)

    Google Scholar 

  20. Jones, A. W., Somlyo, A. P., Somlyo, A. V.: Potassium accumulation in smooth muscle and associated ultrastructural changes. J. Physiol. (Lond.)232, 247–273 (1973)

    Google Scholar 

  21. Julian, F. J., Moore, J. W., Goldman, D.: Current-voltage relations in lobster giant axon membrane under voltage clamp conditions. J. gen. Physiol.45, 1217–1238 (1962)

    Google Scholar 

  22. Kahn, J. B., Jr.: The effect of various lactones and related compounds on cation transfer in incubated cold-stored human erythrocytes. J. Pharmacol. exp. Ther.121, 234–251 (1957)

    Google Scholar 

  23. Maughan, D. N.: Some effects of prolonged polarization on membrane currents in Bullfrog atrial muscle. J. Membr. Biol.11, 331–352 (1973)

    Google Scholar 

  24. Maughan, D. N., McGuigan, J., Bassingthwaighte, J., Reuter, H.: External K+-depletion in mammalian ventricular muscle. Experientia (Basel)29, 746 (1973)

    Google Scholar 

  25. McAllister, R. E., Noble, D.: The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J. Physiol. (Lond.)186, 632–662 (1966)

    Google Scholar 

  26. McGuigan, J. A. S.: Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle. J. Physiol. (Lond.)240, 775–806 (1974)

    Google Scholar 

  27. Mobley, B. A., Page, E.: The surface area of sheep cardiac Purkinje fibres. J. Physiol. (Lond.)220, 547–563 (1972)

    Google Scholar 

  28. Mullins, L. J., Brinley, F. J.: Potassium fluxes in dialysed squid axon. J. gen. Physiol.53, 704–740 (1969)

    Google Scholar 

  29. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. (Lond.)160, 317–352 (1962)

    Google Scholar 

  30. Noble, D., Tsien, R. W.: The outward membrane currents of the slow potassium current in cardiac Purkinje fibres. J. Physiol. (Lond.)195, 185–214 (1968)

    Google Scholar 

  31. Noble, S. J.: Potassium accumulation and depletion in frog activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol. (Lond.).200, 205–231 (1969)

    Google Scholar 

  32. Noble, D., Tsien, R. W.: The kinetics and rectifier properties atrial muscle. J. Physiol. (Lond.)258, 579–613 (1976)

    Google Scholar 

  33. Page, E.: Cat heart musclein vitro. III. The extracellular space. J. gen. Physiol.46, 201–213 (1962)

    Google Scholar 

  34. Page, E., Power, B., Fozzard, H. A., Meddoff, D. A.: Sarcolemmel evaginations with knob-like or stalk projections in Purkinje fibers of sheep's heart. J. Ultrastruct. Res.28, 288–300 (1969)

    Google Scholar 

  35. Peper, K., Trautwein, W.: A note on the pacemaker current in Purkinje fibers. Pflügers Arch.309, 356–61 (1969)

    Google Scholar 

  36. Prince, D. A., Lux, H. C., Neher, E.: Measurement of extracellular potassium activity in cat cortex. Brain Res.50, 489–495 (1973)

    Google Scholar 

  37. Reuter, H.: Slow inactivation of currents in cardiac Purkinje fibres. J. Physiol. (Lond.)197, 233–253 (1968)

    Google Scholar 

  38. Sommer, J. R., Johnson, E. A.: Cardiac muscle: A comparative study of Purkinje fibers and ventricular fibers. J. Cell Biol.36, 497–526 (1968)

    Google Scholar 

  39. Vassalle, M.: Analysis of cardiac pacemaker potential using a “voltage clamp” technique. Amer. J. Physiol.210, 1335–1341 (1966)

    Google Scholar 

  40. Vassalle, M.: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circulat. Res.27, 361–377 (1970)

    Google Scholar 

  41. Weidmann, S.: Shortening of the cardiac action potential due to a brief injection of KCl following the onset of activity. J. Physiol. (Lond.)132, 157–163 (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by SFB 38, Project G2

This work was done during CMB's tenure as a Predoctoral Trainee of the Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, U.S.A., in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Supported by NIH GMS Training Grant 00162

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgarten, C.M., Isenberg, G. Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pflugers Arch. 368, 19–31 (1977). https://doi.org/10.1007/BF01063450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063450

Key words

Navigation