Skip to main content
Log in

Lithium pharmacokinetics: Single-dose experiments and analysis using a physiological model

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The kinetics of lithium (Li +) distribution after a single dose was studied in healthy human subjects. Experiments were performed by simultaneously following changes of Li+ concentration in plasma, erythrocytes (RBC), and urine. The data were fitted by a simple but physiologically realistic model, so that extracted rate constants could be assigned to real body compartments and compared with independent measurements of cellular transport characteristics. The extracted rate constants were used to calculate steady-state cell-to-plasma Li+ ratios for RBC and for inaccessible cells (mainly muscle). In both cell types, the intracellular Li+ concentration is far below electrochemical equilibrium. This finding suggests that the Li+ countertransport efflux mechanism of RBC may be shared with muscle. We also present evidence for a circadian rhythm in Li+ excretion that parallels the daily cycle of Na+ and K+ excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. J. Talso and R. W. Clarke. Excretion and distribution of lithium in the dog.Am. J. Physiol. 166:202–208 (1951).

    CAS  PubMed  Google Scholar 

  2. J. Foulks, G. H. Mudge, and A. Gilman. Renal excretion of cation in dog during infusion of isotonic solutions of lithium chloride.Am. J. Physiol. 168:642–649 (1952).

    CAS  PubMed  Google Scholar 

  3. B. E. Ehrlich and J. M. Diamond. An ultramicro method for analysis of lithium and other biologically important cations.Biochim. Biophys. Acta 543:264–268 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. I. R. Poust, A. G. Mallinger, J. Mallinger, J. M. Himmelhoch, and I. Hanin. Pharmacokinetics of lithium in human plasma and erythrocytes.Psychopharmacol. Commun. 2:91–103 (1976).

    CAS  PubMed  Google Scholar 

  5. P-E. E. Bergner, K. Berniker, T. B. Cooper, J. R. Gradijan, and G. M. Simpson. Lithium kinetics in man: effect of variation in dosage pattern.Br. J. Psychiat. 49:328–339 (1973).

    CAS  Google Scholar 

  6. G. Lanczos.Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956.

    Google Scholar 

  7. F. Acton.Numerical Methods that Work, Harper & Row, New York, 1970.

    Google Scholar 

  8. C. Clausen, S. A. Lewis, and J. M. Diamond. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318 (1979).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. T. C. Ruch and H. D. Patton.Physiology and Biophysics, W. B. Saunders, Philadelphia, 1966.

    Google Scholar 

  10. C. M. Metzler, G. L. Elfring, and A. J. McEwen. A package of computer programs for pharmacokinetics modeling.Biometrics 30:562–563 (1974).

    Article  Google Scholar 

  11. B. E. Ehrlich and J. M. Diamond. Lithium fluxes in human erythrocytes.Am. J. Physiol. 237:C102–110 (1979).

    CAS  PubMed  Google Scholar 

  12. R. W. Bonsnes and H. H. Taussky. On the colorimetric determination of creatinine by the Jaffee reaction.J. Biol. Chem. 158:581–591 (1945).

    CAS  Google Scholar 

  13. J. Brozek. Densitometric analysis of body composition: revision of some quantitative assumptions.Ann. N. Y. Acad. Sci. 110:131–140 (1963).

    Google Scholar 

  14. F. D. Moore and C. M. Boyden. Body cell mass and limits of hydration of the fat-free body: their relation to estimated skeletal weight.Ann. N. Y. Acad. Sci. 110:62–71 (1963).

    Article  CAS  PubMed  Google Scholar 

  15. R. J. Wedgwood. Inconstancy of the lean body mass.Ann. N. Y. Acad. Sci. 110:141–152 (1963).

    Article  CAS  PubMed  Google Scholar 

  16. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, Ill., 1975.

    Google Scholar 

  17. M. Schou. Lithium studies. 3. Distribution between serum and tissues.Acta Pharmacol. Toxicol. 15:115–124 (1958).

    Article  CAS  Google Scholar 

  18. S. Tyrer, R. P. Hullin, N. J. Birch, and J. C. Goodwin. Absorption of lithium following administration of slow-release and conventional preparations.Psychol. Med. 6:51–58 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. K. Thomsen and M. Schou. Renal lithium clearance in man.Am. J. Physiol. 215:823–827 (1968).

    CAS  PubMed  Google Scholar 

  20. S. A. Lewis and J. M. Diamond. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membr. Biol. 28:1–40 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. B. Sarkardi, J. K. Allimoff, R. B. Gunn, and D. C. Tosteson. Kinetics and stochiometry of Na+-dependent Li+ transport in human red blood cells.J. Gen. Physiol. 72:249–265 (1978).

    Article  Google Scholar 

  22. W. C. Hamilton.Statistics in Physical Science, Ronald Press, New York, 1964.

    Google Scholar 

  23. M. Braun.Differential Equations and their Applications, Springer-Verlag, New York, 1970.

    Google Scholar 

  24. K. M. Brown and J. E. Dennis, Jr. Derivative-free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation.Numer. Math. 8:289–297 (1972).

    Google Scholar 

  25. I. R. Poust, A. G. Mallinger, J. Mallinger, J. M. Himmelhoch, J. F. Neil, and I. Hanin. Effect of chlorothiazide on the pharmacokinetics of lithium in plasma and erythrocytes.Psychopharmacol. Commun. 2:273–284 (1976).

    CAS  PubMed  Google Scholar 

  26. H. E. de Warner.The Kidney, Churchill Livingstone, London, 1973.

    Google Scholar 

  27. S. W. Stanbury and A. E. Thomson. Diurnal variations in electrolyte excretion.Clin. Sci. 10:267–293 (1951).

    CAS  PubMed  Google Scholar 

  28. D. F. Smith. Diurnal variations of lithium clearance in the rat.Int. Pharmacopsychiat. 8:99–103 (1973).

    CAS  Google Scholar 

  29. W. Greil, F. Eisenried, B. F. Becker, and J. Duhm. Interindividual differences in the Na+-dependent Li+ countertransport system and in the Li+ distribution ratio across the red cell membrane among Li+-treated patients.Psychopharm. 53:19–26 (1977).

    Article  CAS  Google Scholar 

  30. W. Nernst. Die electromotorische Wirksamkeit der Ionen.Z. Phisik. Chem. 4:129–181 (1889).

    Google Scholar 

  31. A. Amidsen and M. Schou. Biochemistry of depression.Lancet 1:507 (1967).

    Article  Google Scholar 

  32. H. C. Caldwell, W. J. Westlake, S. M. Connor, and T. Flanagan. A pharmacokinetic analysis of lithium carbonate absorption from several formulations in man.J. Clin. Pharmacol. 11:349–356 (1971).

    CAS  Google Scholar 

  33. S. Tyrer. The choice of lithium preparation and how to give it. In F. N. Johnson and S. Johnson (eds.),Lithium in Medical Practice, University Park Press, Baltimore, 1978.

    Google Scholar 

  34. R. W. Mason, E. G. McQueen, P. J. Keary, and N. McI James. Pharmacokinetics of lithium: elimination half-time, renal clearance, and apparent volume of distribution in schizophrenia.Clin. Pharmacokin. 3:241–246 (1978).

    Article  CAS  Google Scholar 

  35. G. Sedvall, U. Pettersson, and B. Fyro. Individual differences in serum levels of lithium in human subjects receiving fixed doses in lithium carbonate. Relation to renal lithium clearance and body weight.Pharmacol. Clin. 2:231–235 (1970).

    Article  CAS  Google Scholar 

  36. A. C. Altamura, R. Gomeni, E. Sacchetti, and E. Smeraldi. Plasma and intracellular kinetics of lithium after oral administration of various lithium salts.Eur. J. Clin. Pharmacol. 12:59–63 (1977).

    Article  CAS  PubMed  Google Scholar 

  37. S. M. Friedman. The effect of external sodium substitution on cell potassium in vascular smooth muscle.J. Physiol. 270:195–208 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. E. Richelson. Lithium ion entry through the sodium channel of cultured mouse neuroblastoma cells: a biochemical study.Science 196:1001–1002 (1977).

    Article  CAS  PubMed  Google Scholar 

  39. A. Geisler, M. Schou, and K. Thomsen. Renal lithium elimination in manic-depressive patients. Initial excretion and clearance.Pharmakopsychiatrie 10:149–155 (1971).

    Article  Google Scholar 

  40. B. Terhaag, A. Scherber, P. Schaps, and H. Winkler. The distribution of lithium into cerebrospinal fluid, brain tissue and bile in man.Int. J. Clin. Pharmacol. 16:333–335 (1978).

    CAS  Google Scholar 

  41. E. Cotlove. Mechanism and extent of distribution of inulin and sucrose in chloride space of tissues.Am. J. Physiol. 176:396–410 (1954).

    CAS  PubMed  Google Scholar 

  42. G. Nichols, Jr., N. Nichols, W. B. Weil, and W. M. Wallace. The direct measurement of the extracellular phase of tissues.J. Clin. Invest. 32:1299–1308 (1953).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. N. J. Birch and R. P. Hullin. The distribution and binding of lithium following its long-term administration.Life Sci. 11:1095–1099 (1972).

    Article  CAS  Google Scholar 

  44. B. E. Ehrlich and J. M. Diamond. Lithium, membranes, and manic-depressive illness.J. Membrane Biol. 52:187–200 (1980).

    Article  CAS  Google Scholar 

  45. V. Groth, W. Prellwitz, and E. J. Jahnchen. Estimation of pharmacokinetic parameters of lithium from saliva and urine.Clin. Pharm. Ther. 16:490–498 (1974).

    CAS  Google Scholar 

  46. J. A. Young. Electrolyte transport by salivary epithelia.Proc. Aust. Physiol. Pharmacol. Soc. 4:101–121 (1973).

    Google Scholar 

  47. A. Frazer, J. Mendels, S. K. Secunda, C. L. Cochrane, and C. P. Bianchi. The prediction of brain lithium concentrations from plasma or erythrocyte measures.J. Psychiat. Res. 10:1–7 (1973).

    Article  CAS  PubMed  Google Scholar 

  48. M. A. Baker and G. Winokur. Cerebrospinal fluid lithium in manic illness.Br. J. Psychiat. 112:163–165 (1966).

    Article  CAS  Google Scholar 

  49. B. E. Ehrlich, J. M. Diamond, C. Clausen, L. Gosenfeld, and S. Kaufman-Diamond. The red cell membrane as a model for studying lithium's therapeutic action. In T. B. Cooper, S. Gershon, N. S. Klein, and M. Schou (eds.),Lithium: Controversies and Unresolved Issues, Excerpta Medica, Amsterdam, 1979.

    Google Scholar 

  50. J. Rybakowski, A. Frazer, and J. Mendels. Lithium efflux from erythrocytes incubated in vitro during lithium carbonate administration.Commun. Psychopharm. 2:105–112 (1978).

    CAS  Google Scholar 

  51. H. L. Meltzer, S. Kassir, D. L. Dunner, and R. R. Fieve. Repression of a lithium pump as a consequence of lithium ingestion by manic-depressive subjects.Psychopharm. 54:113–118 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrlich, B.E., Clausen, C. & Diamond, J.M. Lithium pharmacokinetics: Single-dose experiments and analysis using a physiological model. Journal of Pharmacokinetics and Biopharmaceutics 8, 439–461 (1980). https://doi.org/10.1007/BF01059545

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059545

Key words

Navigation