Skip to main content
Log in

Were there mammalian pursuit predators in the tertiary? Dances with wolf avatars

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Fast-running, long-legged pursuit carnivores are familiar members of the present-day ecosystem, and it has been assumed that extinct large predators took similar ecomorphological roles (i.e., were “wolf avatars”) in past faunas. While these fossil taxa may also have been meat-specialists, we present evidence from limb morphology to show that there was no modern type of pursuit predator until the latest Tertiary. In contrast, ungulates evolved longer legs similar to those of present-day cursorial taxa by the middle Tertiary, some 20 million years earlier. These data suggest the need for the reevaluation of many classical evolutionary stories, not only about assignation of fossil taxa to a wolf-like mode of predatory behavior, but also to issues such as the coevolution of long legs and fast running speeds between predator and prey, and even the implicit assumption that cursorial morphologies are primarily an adaptation for speed. We conclude that evolutionary change in ungulate limb morphologies represents an adaptation to decrease transport costs in association with Tertiary climatic changes and that the present-day predation mode of long distance pursuit is a Plio-Pleistocene phenomenon, related to the development of colder and more arid climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Bakker, R. T. (1983). The deer flees, the wolf pursues: Incongruences in predator-prey coevolution. In Futuyma, D. I., and Slatkin, M. (eds.),Coevolution, Sinauer Associates, Sunderland, MA, pp. 350–382.

    Google Scholar 

  • Berta, A. (1981). The Plio-Pleistocene hyaenaChasmaporthetes ossifragus from Florida.J. Vert. Paleont. 1 341–356.

    Google Scholar 

  • Bertram, B. C. R. (1979). Serengeti predators and their social systems. In Sinclair, A. R. E., and Norton-Griffiths, M. (eds.),Serengeti: Dynamics of an Ecosystem, University of Chicago Press, Chicago, pp. 221–248.

    Google Scholar 

  • Bertram, J. E. A., and Biewener, A. A. (1990). Differential scaling of the long bones in the terrestrial Carnivora and other mammals.J. Morphol. 20 157–169.

    Google Scholar 

  • Chappell, R. (1989). Fitting bent lines to data, with application to allometry.J. Theor. Biol. 138 235–256.

    Google Scholar 

  • Dawkins, R., and Krebs, J. R. (1979). Arms races between and within species.Proc. R. Soc. Lond. Biol. Sci. 205 489–511.

    Google Scholar 

  • Duncan, P., Foose, T. J., Gordon, I. J., Gakahu, C. G., and Lloyd, M. (1990). Comparative nutrient extraction by grazing bovids and equids: A test of the nutritional model of equid/bovid competition and coexistence.Oecologia 84 411–418.

    Google Scholar 

  • Ewer, R. F. (1973).The Carnivores, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Fancy, S. G., and White, R. G. (1985). Incremental costs of activity. In Hudson, R. J., and White, R. G. (eds.)Bioenergetics of Wild Herbivores, CRC Press, Boca Raton, FL, pp. 143–159.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method.Am. Nat. 125 1–15.

    Google Scholar 

  • Gambaryan, P. P. (1974).How Mammals Run, Halstead Press, New York.

    Google Scholar 

  • Garland, T., Jr. (1983a). Scaling the ecological cost of transport to body mass in terrestrial mammals.Am. Nat. 121 571–587.

    Google Scholar 

  • Garland, T., Jr. (1983b). Scaling maximum running speed and body mass in terrestrial animals.J. Zool. Lond. 199 157–170.

    Google Scholar 

  • Garland, T., Jr., and Janis, C. M. (1993). Does metatarsal/femur ratio predict maximal running speed in cursorial mammals?J. Zool. Lond. 229 133–151.

    Google Scholar 

  • Gittleman, J. L. (1989). Carnivore group living: Comparative trends. In Gittleman, J. L. (ed.),Carnivore Behavior, Ecology, and Evolution, Comstock, Ithaca, NY, pp. 183–207.

    Google Scholar 

  • Gittleman, J. L., and Harvey, P. H. (1982). Carnivore home-range size, metabolic needs and ecology.Behav. Ecol. Sociobiol. 10 57–63.

    Google Scholar 

  • Harestad, A. S., and Bunnell, F. L. (1979). Home range and body weight—a re-evaluation.Ecology 60 389–403.

    Google Scholar 

  • Harvey, P. H., and Pagel, M. D. (1991).The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.

    Google Scholar 

  • Heglund, N. C., Taylor, C. R., and McMahon, T. A. (1974). Scaling stride frequency to gait and animal size: mice to horses.Science 186 1112–1113.

    Google Scholar 

  • Hildebrand, M. (1952). An analysis of body proportions in the Canidae.Am. J. Anat. 90 217–256.

    Google Scholar 

  • Hildebrand, M. (1954). Comparative morphology of the body skeleton of the recent Canidae.Univ. Calif. Publ. Zool. Sci. 52 399–470.

    Google Scholar 

  • Hildebrand, M. (1959). Motions of the running cheetah and horse.J. Mammal. 40 481–495.

    Google Scholar 

  • Hildebrand, M. (1974).The Analysis of Vertebrate Structure, John Wiley and Sons, New York.

    Google Scholar 

  • Hobbs, N. T., and Swift, D. N. (1988). Grazing in herds: when are nutritional benefits realized?Am. Nat. 131 760–764.

    Google Scholar 

  • Howell, A. B. (1944).Speed in Animals, Hafner, New York.

    Google Scholar 

  • Janis, C. M. (1994). Do legs support the arms race in mammalian predator/prey relationships? In Horner, J. R., and Ellis, L. (eds.),Vertebrate Behavior as Derived from the Fossil Record, Columbia University Press, New York (in press).

    Google Scholar 

  • Jarman, P. J. (1974). The social organisation of antelope in relation to their ecology.Behaviour 48 215–267.

    Google Scholar 

  • Jarman, P. J., and Jarman, M. V. (1979). The dynamics of ungulate social organization. In Sinclair, A. R. E., and Norton-Griffiths, M. (eds.),Serengeti: Dynamics of an Ecosystem, University of Chicago Press, Chicago, pp. 185–220.

    Google Scholar 

  • Kitts, D. B. (1956). AmericanHyracotherium (Perissodactyla, Mammalia).Bull. Am. Mus. Nat. Hist. 110 1–60.

    Google Scholar 

  • Klein, D. R., Meldgaard, M., and Fancy, S. G. (1987). Factors determining leg length inRangifer tarandus.J. Mammal. 68 642–655.

    Google Scholar 

  • Kruuk, H. (1972).The Spotted Hyena, University of Chicago Press, Chicago.

    Google Scholar 

  • Kruuk, H. (1975). Functional aspects of social hunting by carnivores. In Baerends, C., Beer, C., and Manning, A. (eds.),Function and Evolution in Behaviour, Oxford University Press, Oxford, pp. 119–141.

    Google Scholar 

  • Kurtén, B. (1971).The Age of Mammals, Weidenfeld and Nicolson, London.

    Google Scholar 

  • Lamprecht, J. (1978). The relationship between food competition and foraging group size in some larger carnivores. A hypothesis.Z. Tierpsychol. 22 337–343.

    Google Scholar 

  • Lamprecht, J. (1981). The function of social hunting in larger terrestrial carnivores.Mammal Rev. 11 169–179.

    Google Scholar 

  • LeSouef, A. S., and Burrell, H. (1926).The Wild Mammals of Australasia, George C. Harrap, London.

    Google Scholar 

  • Lindstedt, S. L., Hokanson, J. F., Wells, D. J., Swain, S. D., Hoppeler, H., and Navarro, V. (1991). Running energetics in the pronghorn antelope.Nature 353 748–750.

    Google Scholar 

  • MacDonald, D. W. (1983). The ecology of carnivore social behaviour.Nature 301 379–384.

    Google Scholar 

  • Marshall, L. G. (1978). Evolution of the Borhyaenidae, extinct South American predaceous marsupials.Univ. Calif. Publ. Geol. Sci. 117 1–89.

    Google Scholar 

  • Martin, L. B. (1980). Functional morphology and the evolution of cats.Trans. Neb. Acad. Sci. 7 141–154.

    Google Scholar 

  • Martin, L. B. (1985). Tertiary extinction cycles and the Pliocene-Pleistocene boundary.Institute for Tertiary Studies (TER-QUA) Symposium Series 1 33–40.

    Google Scholar 

  • Martin, L. B. (1989). Fossil history of the terrestrial Carnivora. In Gittleman, J. L. (ed.),Carnivore Behavior, Ecology and Evolution, Comstock, Cornell University Press, Ithaca, NY, pp. 536–568.

    Google Scholar 

  • Martins, E. P., and Garland, T., Jr. (1991). Phylogenetic analysis of the correlated evolution of continuous characters: A simulation study.Evolution 45 534–557.

    Google Scholar 

  • Maynard Smith, J., and Savage, R. C. (1956). Some locomotory adaptations in mammals.J. Linn. Soc. 42 603–622.

    Google Scholar 

  • McNaughton, S. J. (1986). Grazing in lawns: animals in herds, plant form and coevolution.Am. Nat. 124 863–886.

    Google Scholar 

  • Mellett, J. S. (1977).Paleobiology of North American Hyaenodon(Mammalia, Creodonta), Contrib. Vert. Evol. Vol. 1, S. Karger, Basel.

    Google Scholar 

  • Munthe, K. (1989). The skeleton of the Borophaginae (Carnivora, Canidae): Morphology and function.Univ. Calif. Publ. Geol. Sci. 133 1–115.

    Google Scholar 

  • Nesbit Evans, E. M., Van Couvering, J. A. H., and Andrews, P. (1981). Palaeoecology of Miocene Sites in Western Kenya.J. Hum. Evol. 10 99–116.

    Google Scholar 

  • Pascual, R., and Ortiz Jaureguizar, E. (1990). Evolving climates and mammal faunas in Cenozoic South America.J. Hum. Evol. 19 23–60.

    Google Scholar 

  • Pennycuick, C. J. (1975). On the running of the gnu (Connochaetes taurinus) and other mammals.J. Exp. Biol. 63 775–779.

    Google Scholar 

  • Pennycuick, C. J. (1979). Energy costs of locomotion and the concept of a “foraging radius.” In Sinclair, A. R. E., and Norton-Griffiths, M. (eds.),Serengeti: Dynamics of an Ecosystem, University of Chicago Press, Chicago, pp. 164–184.

    Google Scholar 

  • Reyment, R. A., and Blackith, R. E. (1984).Multivariate Morphometrics, Academic Press, London.

    Google Scholar 

  • Savage, R. J. G. (1977). Evolution in carnivorous mammals.Palaeontology 20 237–271.

    Google Scholar 

  • Schaller, G. B. (1972).The Serengeti Lion, University of Chicago Press, Chicago.

    Google Scholar 

  • Scott, K. M. (1985). Allometric trends and locomotor adaptations in the Bovidae.Bull. Am. Mus. Nat. Hist. 179 197–288.

    Google Scholar 

  • Scott, K. M. (1987). Allometry and habitat-related adaptations in the postcranial skeleton of Cervidae. In Wemmer, C. (ed.),Biology and Management of the Cervidae, Smithsonian Institution Press, Washington, DC, pp. 65–80.

    Google Scholar 

  • Shipman, P., and Walker, A. (1989). The costs of becoming a predator.J. Hum. Evol. 18 373–392.

    Google Scholar 

  • Simmonetta, A. M. (1966). Osservazion etologiche e ecologiche sui dik-dik (Madoqua Mammalia Bovidae) in Somalia.Monitore Zool. Ital. Suppl. 74 1–33.

    Google Scholar 

  • Simpson, G. G. (1944).Tempo and Mode in Evolution, Columbia University Press, New York.

    Google Scholar 

  • Simpson, G. G. (1951).Horses, Oxford University Press, Oxford.

    Google Scholar 

  • Singh, G. (1988). History of aridland vegetation and climate: A global perspective.Biol. Rev. 63 156–196.

    Google Scholar 

  • Stanley, S. M. (1992). An ecological theory for the origin ofHomo.Paleobiology 18 237–257.

    Google Scholar 

  • Strang, K. T., and Steudal, K. (1990). Explaining the scaling of transport costs: The role of stride frequency and stride length.J. Zool. Lond. 221 343–358.

    Google Scholar 

  • Swihart, R. K., Slade, N. A., and Bergstrom, B. J. (1988). Relating body size to the rate of home range use in mammals.Ecology 69 393–399.

    Google Scholar 

  • Taylor, C. R., Schmidt-Nielsen, K., Dmi'el, R., and Fedak, M. (1971). Effect of hypothermia and heat balance during running in the African hunting dog.Am. J. Physiol. 220 823–827.

    Google Scholar 

  • Taylor, C. R., Heglund, N. C., and Maloiy, G. M. O. (1982). Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals.J. Exp. Biol. 97 1–12.

    Google Scholar 

  • Van Valkenburgh, B. (1985). Locomotory diversity in past and present guilds of large predatory mammals.paleobiology 11 406–428.

    Google Scholar 

  • Van Valkenburgh, B. (1987). Skeletal indicators of locomotor behaviour in living and extinct carnivores.J. Vert. Paleont. 7 162–182.

    Google Scholar 

  • Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals.Paleobiology 14 155–173.

    Google Scholar 

  • Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators.Paleobiology 17 340–362.

    Google Scholar 

  • Vermeij, G. J. (1987).Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Webb, S. D. (1977). A history of savanna vertebrates in the New World. Part 1: North America.Annu. Rev. Ecol. Syst. 8 355–380.

    Google Scholar 

  • Webb, S. D. (1983). The rise and fall of the Late Miocene ungulate fauna in North America. In Nitecki, M. H. (ed.),Coevolution, University of Chicago Press, Chicago, pp. 267–306.

    Google Scholar 

  • Werdelin, L., and Solunias, N. (1991). The Hyaenidae: Taxonomy, systematics and evolution.Fossils Strata 30 1–104.

    Google Scholar 

  • Wilhelm, P. B. (1993). Morphometric Analyses of the Limb Skeleton of Generalized Mammals in Relation to Locomotor Behavior, with Applications to Fossil Mammals. Ph.D. dissertation, Brown University.

  • Wolfe, J. A. (1985). Distribution of major vegetational types during the Tertiary.Am. Geophys. Union Monogr. 32 357–375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janis, C.M., Wilhelm, P.B. Were there mammalian pursuit predators in the tertiary? Dances with wolf avatars. J Mammal Evol 1, 103–125 (1993). https://doi.org/10.1007/BF01041590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041590

Key words

Navigation