Skip to main content
Log in

The amino acid sequence of hemoglobin III from the symbiont-harboring clamLucina pectinata

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

The cytoplasmic hemoglobin III from the gill of the symbiont-harboring clamLucina pectinata consists of 152 amino acid residues, has a calculated Mm of 18,068, including heme, and has N-acetyl-serine as the N-terminal residue. Based on the alignment of its sequence with other vertebrate and nonvertebrate globins, it retains the invariant residues Phe45 at position CD1 and His98 at the proximal position F8, as well as the highly conserved Trp16 and Pro39 at positions A12 and C2, respectively. The most likely candidate for the distal residue at position E7 is Gln66.Lucina hemoglobin III shares 95 identical residues with hemoglobin II (J. D. Hockenhull-Johnsonet al., J. Prot. Chem. 10, 609–622, 1991), including Tyr at position B10, which has been shown to be capable of entering the distal heme cavity and placing its hydroxyl group within a 2.8 Å of the water molecule occupying the distal ligand position, by modeling the hemoglobin II sequence using the crystal structure of sperm whale metmyoglobin. The amino acid sequences of the twoLucina globins are compared in detail with the known sequences of mollusc globins, including seven cytoplasmic and 11 intracellular globins. Relative to 75% homology between the twoLucina globins (counting identical and conserved residues), both sequences have percent homology scores ranging from 36–49% when compared to the two groups of mollusc globins. The highest homology appears to exist between theLucina globins and the cytoplasmic hemoglobin ofBusycon canaliculatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arents, G., and Love, W. E. (1990).J. Mol. Biol. 210, 149–161.

    Article  Google Scholar 

  • Bashford, D., Chothia, C., and Lesk, A. M. (1987).J. Mol. Biol. 196, 199–216.

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi, M., Onesti, S., Gatti, G., Coda, A., Ascenzi, P., and Brunori, M. (1989).J. Mol. Biol. 205, 529–544.

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi, M., Coda, A., Frigerio, F., Gatti, G., Ascenzi, P., and Brunori, M. (1990).J. Mol. Biol. 213, 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi, M., Frigerio, F., Lionetti, C., Rizzi, M., Ascenzi, P., and Brunori, M. (1991). InStructure and Function of Invertebrate Oxygen Carriers (Vinogradov, S. N., and Kapp, O. H., eds.), Springer-Verlag, New York, pp. 163–172.

    Google Scholar 

  • Bonaventura, C., and Bonaventura, J. (1983). InThe Mollusca, Vol. 2, Academic Press, New York, pp. 1–50.

    Book  Google Scholar 

  • Bordo, D., and Argos, P. (1990).J. Mol. Biol. 211, 975–988.

    Article  CAS  PubMed  Google Scholar 

  • Bordo, D., and Argos, P. (1991).J. Mol. Biol. 217, 721–729.

    Article  CAS  PubMed  Google Scholar 

  • Bonner, A. S., and Laursen, R. A. (1977).FEBS Lett. 73, 201–203.

    Article  CAS  PubMed  Google Scholar 

  • Chan, M. M. S. (1984).Beckman Chromatogr. 5, 2–5.

    Google Scholar 

  • Childress, J. J., and Fisher, C. R. (1992).Oceanogr. Mar. Biol. Ann. Rev. 30, 35–46.

    Google Scholar 

  • Como, P. F., and Thompson, E. O. P. (1980).Austr. J. Biol. Sci. 33, 653–664.

    Article  CAS  Google Scholar 

  • Crestfield, A. M., Moore, S., and Stein, W. H. (1963).J. Biol. Chem. 238, 622–627.

    Article  CAS  PubMed  Google Scholar 

  • Fermi, G., and Perutz, M. F. (1981).Atlas of Molecular Structures in Biology 2: Haemoglobin and Myoglobin, Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, C. R. (1990).Rev. Aquatic Sci. 2, 399–436.

    CAS  Google Scholar 

  • Fisher, W. K., Gilbert, A. T., and Thompson, E. O. P. (1984).Austr. J. Biol. Sci. 37, 191–203.

    Article  CAS  Google Scholar 

  • Frenkel, M. J., Dopheide, T. A. A., Wagland, B. M., and Ward, C. W. (1992).Mol. Biochem. Parasit. 50, 27–36.

    Article  CAS  Google Scholar 

  • Furuta, H., and Kajita, A. (1983).Biochemistry 22, 917–922.

    Article  CAS  PubMed  Google Scholar 

  • Furuta, H., and Kajita, A. (1986). InInvertebrate Oxygen Carriers (Linzen, B., ed.), Springer-Verlag, Berlin, pp. 117–121.

    Chapter  Google Scholar 

  • Furuta, H., and Kajita, A. (1991). InStructure and Function of Invertebrate Oxygen Carriers (Vinogradov, S. N., and Kapp, O. H., eds.), Springer-Verlag, New York, pp. 257–260.

    Chapter  Google Scholar 

  • Garey, J. R., and Riggs, A. F. (1986).J. Biol. Chem. 261, 16,446–16,450.

    Article  CAS  Google Scholar 

  • Garey, J. R., and Thompson, E. O. P. (1985).Austr. J. Biol. Sci. 38, 221–236.

    Article  Google Scholar 

  • Goodman, M., Branitzer, G., Kleinschmidt, T., and Aschauer, H. (1983)Z. Physiol. Chem. 354, 205–217.

    Article  Google Scholar 

  • Gross, E., and Witkop, B. (1962).J. Biol. Chem. 237, 1856–1860.

    Article  CAS  PubMed  Google Scholar 

  • Henrickson, R. I., and Meredith, S. C. (1984).Anal. Biochem. 136, 65–74.

    Article  Google Scholar 

  • Hockenhull-Johnson, J. D., Stern, M. S., Martin, P., Dass, C., Desiderio, D. M., Wittenberg, J. B., Vinogradov, S. N., and Walz, D. A. (1991).J. Prot. Chem. 10, 609–622.

    Article  CAS  Google Scholar 

  • Honzatko, R. B., Hendrickson, W. A., and Love, W. E. (1985).J. Mol. Biol. 184, 147–164.

    Article  CAS  PubMed  Google Scholar 

  • Imamura, T., Baldwin, T. O., and Riggs, A. F. (1972).J. Biol. Chem. 247, 2785–2797.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M. L. (ed.) (1985).Bull. Biol. Soc. Wash. 6, 1–547.

  • Kemling, N., Kraus, D. W., Wittenberg, J. B., Vinogradov, S. N., Walz, D. A., Hockenhull-Johnson, J. D., Edwards, B. F. P., and Martin, P. (1991).J. Mol. Biol. 222, 463–464.

    Article  CAS  PubMed  Google Scholar 

  • Konieczny, A., Jensen, E. O., Marcker, K. A., and Legocki, A. B. (1987).Mol. Biol. Rep. 12, 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, D. W., and Wittenberg, J. B. (1990).J. Biol. Chem. 265, 16,043–16,053.

    Article  CAS  Google Scholar 

  • Kraus, D. W., Wittenberg, J. B., Lu, J. F., and Peisach, J. (1990).J. Biol. Chem. 265, 16,054–16,059.

    Article  CAS  Google Scholar 

  • Lesk, A. M., and Chothia, C. (1980).J. Mol. Biol. 136, 225–270.

    Article  CAS  PubMed  Google Scholar 

  • Li, S. L., and Riggs, A. F. (1970).J. Biol. Chem. 245, 6149–6152.

    Article  CAS  PubMed  Google Scholar 

  • Mann, R. G., Fisher, W. K., Gilbert, A. T., and Thompson, E. O. P. (1986).Austr. J. Biol. Sci. 39, 109–115.

    Article  CAS  Google Scholar 

  • Nagel, R. L. (1985). InBlood Cells of Marine Invertebrates (W. D. Cohen, ed.), Alan R. Liss, New York, pp. 227–247.

    Google Scholar 

  • Pastore, A., Lesk, A. M., Bolognesi, M., and Onesti, S. (1988).Proteins Struc. Func. Genet. 4, 240–250.

    Article  CAS  Google Scholar 

  • Petruzzelli, R., Goffredo, B. M., Barra, D., Bossa, F., Boffi, A., Verzili, D., Ascoli, F., and Chiancone, E. (1985).FEBS Lett. 184, 328–332.

    Article  CAS  PubMed  Google Scholar 

  • Petruzzelli, R., Boffi, A., Barra, D., Bossa, F., Ascoli, F., and Chiancone, E. (1989).FEBS Lett. 259, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Read, K. R. H. (1966). InPhysiology of Mollusca (Wilbur, K. M., and Yonge, C. M., eds.), Vol. 2, Academic Press, New York, pp. 209–232.

    Chapter  Google Scholar 

  • Riggs, A. F., Riggs, C. K., Lin, R. J., and Domdey, H. (1986). InInvertebrate Oxygen Carriers (Linzen, B., ed.), Springer-Verlag, Berlin, pp. 473–476.

    Chapter  Google Scholar 

  • Riggs, C. K., and Riggs, A. F. (1990). InInvertebrate Dioxygen Carriers (Preaux, G., and Lontie, R., eds.), Leuven University Press, Leuven, pp. 57–60.

    Google Scholar 

  • Royer, W. E., Love, W. E., and Fenderson, F. F. (1985).Nature 316, 277–280.

    Article  CAS  PubMed  Google Scholar 

  • Royer, W. E., Hendrickson, W. A., and Love, W. E. (1989).J. Biol. Chem. 264, 31,052–31,062.

    Article  Google Scholar 

  • Shishikura, F., Snow, J. W., Gotoh, T., Vinogradov, S. N., and Walz, D. A. (1987).J. Biol. Chem. 262, 3123–3130.

    Article  CAS  PubMed  Google Scholar 

  • Southward, E. C. (1987). InMicrobes in the Seq (Sleigh, M. A., ed.), Ellis Horwood, Chichester, pp. 84–116.

    Google Scholar 

  • Suzuki, T., Takagi, T., and Shikama, K. (1981).Biochim. Biophys. Acta 669, 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T. (1986).J. Biol. Chem. 261, 3692–3699.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T., Takagi, T., and Ohta, S. (1989a)Biochem. J. 260, 177–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T., Takagi, T., and Ohta, S. (1989b).Biochim. Biophys. Acta 999, 254–259.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T., and Furukohri, T. (1990).J. Prot. Chem. 9, 69–73.

    Article  CAS  Google Scholar 

  • Takagi, T., Tobita, M., and Shikama, K. (1983)Biochim. Biophys. Acta 745, 32–36.

    Article  CAS  PubMed  Google Scholar 

  • Takagi, T., Iida, S., Matsuoka, A., and Sikama, K. (1984).J. Mol. Biol. 180, 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  • Teale, F. W. J. (1959).Biochim. Biophys. Acta 35, 543.

    Article  CAS  PubMed  Google Scholar 

  • Tentori, L., Vivaldi, G., Carta, S., Antonini, A., and Brunori, M. (1973).Int. J. Pep. Prot. Res. 5, 182–200.

    Google Scholar 

  • Terwilliger, R. C., and Terwilliger, N. B. (1985).Comp. Biochem. Physiol. 81B, 255–261.

    CAS  Google Scholar 

  • Titchen, D. A., Glenn, W. K., Nassif, N., Thompson, A. R., and Thompson, E. O. P. (1991).Biochim. Biophys. Acta 1089, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi, S., Matsubara, H., and Webster, D. A. (1986).Nature 322, 481–483.

    Article  CAS  PubMed  Google Scholar 

  • Wellner, D., Pannserselvam, C., and Horecker, B. L. (1990).Proc. Natl. Acad. Sci. U.S.A. 87, 1947–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenberg, J. (1985).Bull. Biol. Soc. Washington 6, 301–310.

    Google Scholar 

  • Wittenberg, J. B., and Kraus, D. W (1991). InStructure and Function of Invertebrate Oxygen Carriers (Vinogradov, S. N., and Kapp, O. H., eds.), Springer-Verlag, New York, pp. 323–330.

    Chapter  Google Scholar 

  • Wittenberg, J. B., and Wittenberg, B. A. (1990).Annu. Rev. Biophys. Biophys. Chem. 19, 217–235.

    Article  CAS  PubMed  Google Scholar 

  • Yegorov, Ts. A., Kazakov, V. K., Shakhparonov, M. I., and Feigina, M. Yu. (1980).Bioorg. Khim. 6, 349–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hockenhull-Johnson, J.D., Stern, M.S., Wittenberg, J.B. et al. The amino acid sequence of hemoglobin III from the symbiont-harboring clamLucina pectinata. J Protein Chem 12, 261–277 (1993). https://doi.org/10.1007/BF01028189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028189

Key words

Navigation