Skip to main content
Log in

Statics and dynamics of a diffusion-limited reaction: Anomalous kinetics, nonequilibrium self-ordering, and a dynamic transition

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We solve exactly the one-dimensional diffusion-limited single-species coagulation process (A+A→A) with back reactions (A→A+A) and/or a steady input of particles (B→A). The exact solution yields not only the steady-state concentration of particles, but also the exact time-dependent concentration as well as the time-dependent probability distribution for the distance between neighboring particles, i. e., the interparticle distribution function (IPDF). The concentration for this diffusion-limited reaction process does not obey the classical “mean-field” rate equation. Rather, the kinetics is described by a finite set of ordinary differential equations only in particular cases, with no such description holding in general. The reaction kinetics is linked to the spatial distribution of particles as reflected in the IPDFs. The spatial distribution of particles is totally random, i. e., the maximum entropy distribution, only in the steady state of the strictly reversible process A+A↔A, a true equilibrium state with detailed balance. Away from this equilibrium state the particles display a static or dynamic self-organization imposed by the nonequilibrium reactions. The strictly reversible process also exhibits a sharp transition in its relaxation dynamics when switching between equilibria of different values of the system parameters. When the system parameters are suddenly changed so that the new equilibrium concentration is greater than exactly twice the old equilibrium concentration, the exponential relaxation time depends on the initial concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Laidler,Chemical Kinetics (McGraw-Hill, New York, 1965).

    Google Scholar 

  2. S. W. Benson,The Foundations of Chemical Kinetics (McGraw-Hill, New York, 1960).

    Google Scholar 

  3. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  4. H. Haken,Synergetics (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  5. G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1980).

    Google Scholar 

  6. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  7. K. Kang and S. Redner,Phys. Rev. A 32:435 (1985); V. Kuzovkov and E. Kotomin,Rep. Prog. Phys. 51:1479 (1988).

    Google Scholar 

  8. D. Toussaint and F. Wilczek,J. Chem. Phys. 78:2642 (1983).

    Google Scholar 

  9. G. Zumofen, A. Blumen, and J. Klafter,J. Chem. Phys. 82:3198 (1985).

    Google Scholar 

  10. M. Bramson and J. L. Lebowitz,Phys. Rev. Lett. 61:2397 (1988).

    Google Scholar 

  11. D. ben-Avraham,J. Stat. Phys. 48:315 (1987);Phil. Mag. B 56:1015 (1987).

    Google Scholar 

  12. R. Kopelman,J. Stat. Phys. 42:185 (1986);Science 241:1620 (1988).

    Google Scholar 

  13. H. Berryman and D. Franceschetti,Phys. Lett. A 136:348 (1989).

    Google Scholar 

  14. D. Dab, A. Lawniczak, J.-P. Boon, and R. Kapral,Phys. Rev. Lett. 64:2462 (1990).

    Google Scholar 

  15. C. R. Doering and D. ben-Avraham,Phys. Rev. A 38:3035 (1988).

    Google Scholar 

  16. C. R. Doering and D. ben-Avraham,Phys. Rev. Lett. 62:2563 (1989).

    Google Scholar 

  17. M. A. Burschka, C. R. Doering, and D. ben-Avraham,Phys. Rev. Lett. 63:700 (1989).

    Google Scholar 

  18. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  19. M. Bramson and D. Griffeath,Ann. Prob. 8:183 (1980);Z. Wahrsch. Geb. 53:183 (1980).

    Google Scholar 

  20. J. L. Spouge,Phys. Rev. Lett. 60:871 (1988).

    Google Scholar 

  21. H. Takayasu, I. Nishikawa, and H. Tasaki,Phys. Rev. A 37:3110 (1988).

    Google Scholar 

  22. L. W. Anacker and R. Kopelman,J. Chem. Phys. 81:6402 (1984).

    Google Scholar 

  23. M. A. Burschka, unpublished.

  24. N. G. van Kampen,Int. J. Quantum Chem., Quantum Chem. Symp. 16:101 (1982).

    Google Scholar 

  25. L. Peliti,J. Phys. A 19:L365 (1985).

    Google Scholar 

  26. D. C. Torney and H. M. McConnell,Proc. R. Soc. Lond. A 387:147 (1983).

    Google Scholar 

  27. A. A. Lushnikov,Phys. Lett. A 120:135 (1987).

    Google Scholar 

  28. Z. Rácz,Phys. Rev. Lett. 55:1707 (1985).

    Google Scholar 

  29. J. C. Lin, C. R. Doering, and D. ben-Avraham, Joint density closure schemes for a diffusion-limited reaction,Chemical Phys., in press (1990).

  30. M. A. Burschaka,J. Stat. Phys. 45:715 (1986).

    Google Scholar 

  31. C. R. Doering and M. A. Burschka,Phys. Rev. Lett. 64:245 (1990).

    Google Scholar 

  32. R. Temam,Infinite Dimensional Dynamical Systems in Mechanics and Physics (Springer, 1988); P. Constantin, C. Foias, B. Nicolaenko, and R. Temam,Integral and Inertial Manifolds for Dissipative Partial Differential Equations (Springer, 1989).

  33. W. Horsthemke and R. Lefever,Noise Induced Transitions (Springer, 1984).

  34. C. R. Doering, H. R. Brand, and R. E. Ecke, eds., Proceedings of the workshop on external noise and its interaction with spatial degrees of freedom in nonlinear dissipative systems,J. Stat. Phys. 54(5/6) (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ben-Avraham, D., Burschka, M.A. & Doering, C.R. Statics and dynamics of a diffusion-limited reaction: Anomalous kinetics, nonequilibrium self-ordering, and a dynamic transition. J Stat Phys 60, 695–728 (1990). https://doi.org/10.1007/BF01025990

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025990

Key words

Navigation