Skip to main content
Log in

Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Herbivorous insects have the capacity to develop behavioral, physiological, and biochemical resistance mechanisms in response to chemical selection pressures. Among natural insect-plant associations, there are several cases of target-site insensitivity to and enhanced metabolism of plant allelochemicals. There are also known instances of physiological defenses such as extra rapid excretion or storage of toxic compounds. Multiple defenses seem to be prevalent in natural insect-plant interactions that involve toxic compounds, possibly reflecting the long time these interactions have had to evolve compared to insect-synthetic insecticide interactions. Synthetic insecticides were introduced about 45 years ago. Until recently they have been used as single-active-component preparations. As such, they have been and are very effective in producing insect populations with enhanced detoxification ability and target-site insensitivity. Most insecticide-resistant insect populations have one major defense mechanism. This feature makes the synthetic insecticides very useful tools for studies of insect defenses against toxic chemicals. Information gained from studies with insecticides can shed light on the capabilities of insects to adapt to toxicants in their environment. In assessing the validity of work with synthetic insecticides for natural systems, the fundamental differences between these substances and allelochemicals, and in their presentation to the insects, must, however, be considered. The prevalence of multiple defenses and reliance on modified physiological processes in natural interactions may reflect different properties of the natural chemicals in being generally highly biodegradable and often less acutely toxic than synthetic insecticides. In many cases, the plant allelochemicals are presented to the insects as mixtures. It is, however, to be expected that pest insects will evolve effective multiple defenses against synthetic insecticides. About 20% of all resistant populations have already developed multiple defenses, in most cases combinations of enhanced metabolism and target-site insensitivity. This implies that current crop protection practices need to be modified to ensure the continued usefulness of synthetic insecticides. To achieve this, it is important to study intensively not only insect-insecticide interactions but also the interactions operating in natural insect-plant associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elraof, T.K., andDauterman, W.C. 1981. The effect of phenobarbital on mercapturic acid synthesis in the house fly,Musca domestica.Insect Biochem. 11:649–651.

    Google Scholar 

  • Agosin, M. 1985. Role of microsomal oxidases in insecticide degradation, pp. 647–712,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, New York.

    Google Scholar 

  • Ahmad, S. 1986. Enzymatic adaptations of herbivorous insects and mites to phytochemicals.J. Chem. Ecol. 12:533–560.

    Google Scholar 

  • Ahmad, S., Brattsten, L.B., Mullin, C.A., andYu, S. 1986. Enzymes involved in the metabolism of plant allelochemicals, pp. 73–151,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Benke, G.M., Wilkinson, C.F., andTelford, J.N. 1972. Microsomal oxidases in a cockroach,Gromphadorina ponenlosa.J. Econ. Entomol. 65:1221–1229.

    Google Scholar 

  • Berenbaum, M.R. 1986. Target site insensitivity in insect-plant interactions, pp. 257–272,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Boyland, E., andWilliams, K. 1965. An enzyme catalyzing the conjugation of epoxides with glutathione.Biochem. J. 94:190–197.

    Google Scholar 

  • Brattsten, L.B. 1979. Ecological significance of mixed-function oxidations.Drug Metab. Rev. 10:35–58.

    Google Scholar 

  • Brattsten, L.B. 1986. Fate of ingested plant allelochemicals in herbivorous insects, pp. 211–255,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Brattsten, L.B. 1987. Inducibility of metabolic insecticide defenses in boll weevils and tobacco budworm caterpillars.Pestic. Biochem. Physiol. 27:13–23.

    Google Scholar 

  • Brattsten, L.B. 1988. Potential role of plant allelochemicals in the development of insecticide resistance,in P. Barbosa and D. K. Letourneau (eds.). Novel Aspects of Plant Insect Interactions. Wiley, New York. In press.

    Google Scholar 

  • Brattsten, L.B., andWilkinson, C.F. 1973. Induction of microsomal enzymes in the southern armyworm (Prodenia eridania).Pestic. Biochem. Physiol. 3:393–407.

    Google Scholar 

  • Brattsten, L.B., Wilkinson, C.F., andEisner, T. 1977. Herbivore-plant interactions: Mixed-function oxidases and secondary plant substances.Science 196:1349–1352.

    Google Scholar 

  • Brattsten, L.B., Samuelian, J.H., Long, K.Y., Kincaid, S.A. andEvans, C.K 1983. Cyanide as a feeding stimulant for the southern armyworm,Spodoptera eridania. Ecol. Entomol., 12:125–132.

    Google Scholar 

  • Brattsten, L.B., Evans, C.K., Bonetti, S., andZalkow, L.H. 1984. Induction by carrot allelochemicals of insecticide-metabolizing enzymes in the southern armyworm (Spodoptera eridania).Comp. Biochem. Physiol. 77C:29–37.

    Google Scholar 

  • Brattsten, L.B., Holyoke, C.W., Jr., Leeper, J.R., andRaffa, K.F. 1986. Insecticide resistance: Challenge to pest management and basic research.Science 231:1255–1260.

    Google Scholar 

  • Brower, L.P., andGlazier, S.C. 1975. Localization of heart poisons in the monarch butterfly.Science 188:570–572.

    Google Scholar 

  • Bull, D.L., Ivie, G.W., Beier, R.C., Pryor, N.W., andOertli, E.H. 1984. In vitro metabolism of a linear furanocoumarin (8-methoxypsoralen, xanthotoxin) by mixed-function oxidases of larvae of black swallowtail butterfly and fall armyworm.J. Chem. Ecol. 12:884–892.

    Google Scholar 

  • Chipoulet, J.M., andChararas, C. 1985. Survey of electrophoretical separation of the glycosidases ofRhagium inquisitor (Coleoptera: Cerambycidae) larvae.Comp. Biochem. Physiol. 80B:241–246.

    Google Scholar 

  • Clark, A.G., andDrake, B. 1984. Purification and properties of glutathione S-transferases from larvae ofWiseana cervinata.Biochem. J. 217:41–50.

    Google Scholar 

  • Clark, A.G., andShaaman, N.A. 1984. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase.Pestic. Biochem. Physiol. 22:249–261.

    Google Scholar 

  • Clark, A.G., Dick, G.L., Martindale, S.M., andSmith, J.N. 1985. GlutathioneS-transferases from the New Zealand grass grub,Costelythra zealandica. Their isolation and characterization and the effect on their activity of endogenous factors.Insect Biochem. 15:35–44.

    Google Scholar 

  • Clark, A.G., Shaaman, N.A., Sinclair, M.D., andDauterman, W.C. 1986. Insecticide metabolism by multiple glutathioneS-transferases in two strains of the house fly,Musca domestica.Pestic. Biochem. Physiol. 22:51–59.

    Google Scholar 

  • Cohen, A.J., Smith, J.N., andTurbert, H. 1964. Comparative detoxication 10. The enzymic conjugation of chloro compounds with glutathione in locusts and other insects.Biochem. J. 90:457–464.

    Google Scholar 

  • Coon, M.J., andPersson, A.V. 1980. Microsomal cytochrome P-450: A central catalyst in detoxication reactions, pp. 117–134,in W.B. Jakoby (ed.). Enzymatic Basis of Detoxication, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Corbett, J.R., Wright, K., andBaillie, A.C. (eds.). 1984. The Biochemical Mode of Action of Pesticides, 2nd ed, Academic Press, New York.

    Google Scholar 

  • Dauterman, W.C. 1985. Insect metabolism: extramicrosomal, pp. 713–730,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon Press, New York.

    Google Scholar 

  • Davis, R.H., andNahrstedt, A 1985. Cyanogenesis in insects, pp. 635–654,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Pergamon Press, New York.

    Google Scholar 

  • Devonshire, A.L., andMoores, G.D. 1982. A carboxyesterase with broad substrate specificity causes organophosphorous, carbamate and pyrethroid resistance in peach-potaio aphids (Myzus persicae).Pestic. Biochem. Physiol. 18:235–246.

    Google Scholar 

  • Dolinger, P.M., Ehrlich, P.R., Fitch, W.L., andBreedlove, D.E. 1973. Alkaloid and predation patterns in Colorado lupine populations.Oecologia (Berlin) 13:191–204.

    Google Scholar 

  • Dowd, P.F., andSparks, T.C. 1986. Characterization of atrans-permethrin hydrolyzing enzyme from the midgut ofPseudoplusia includens (Walker).Pestic. Biochem. Physiol. 25:73–81.

    Google Scholar 

  • Dreyer, D.L., andCampbell, B.C. 1987. Chemical basis of host-plant resistance to aphids.Plant, Cell Environ. 10:353–361.

    Google Scholar 

  • Dussourd, D.E., andEisner, T. 1987. Vein-cutting behavior: Insect counterploy to the latex defense of plants.Science 237:898–901.

    Google Scholar 

  • Dykstra, W.G., andDauterman, W.C. 1978. Excretion, distribution and metabolism ofS-(2,4-dinitrophenyl)glutathione in the American cockroach.Insect Biochem. 8:263–265.

    Google Scholar 

  • Eldefrawi, M.E., Eldefrawi, A.T., andO'Brien, R.D. 1970. Mode of action of nicotine in the house fly.J. Agric. Food Chem. 18:1113–1116.

    Google Scholar 

  • Ellis-Pratt, G., 1983. The mode of action of pro-allatocidins, pp. 323–355,in D.L. Whitehead and W.S. Bowers (eds.). Natural Products for Innovative Pest Management. Pergamon Press, New York.

    Google Scholar 

  • Fraenkel, G. 1959. The raison d'être of secondary plant substances.Science 129:1466–1470.

    Google Scholar 

  • Frazier, J.L., 1986. The perception of plant allelochemicals that inhibit feeding, pp. 1–42,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Feyereisen, R., andFarnsworth, D.E. 1985. Developmental changes of microsomal cytochrome P-450 monooxygenases in larval and adultDiploptera punctata.Insect Biochem. 6:755–761.

    Google Scholar 

  • Fjellstedt, T.A., Allen, R.H., Duncan, B.K., andJakoby, W.B. 1973. Enzymatic conjugation of epoxides with glutathione.J. Biol. Chem. 248:3702–3707.

    Google Scholar 

  • Georohiou, G.P. 1972. The evolution of resistance to pesticides.Annu. Rev. Ecol. Syst. 3:133–168.

    Google Scholar 

  • Georohiou, G.P. 1980. Insecticide resistance and prospects for its management.Resid. Rev. 76:131–145.

    Google Scholar 

  • Georohiou, G.P. 1981. The Occurrence of Resistance to Pesticides in Arthropods. Food and Agriculture Organization, Rome.

    Google Scholar 

  • Georghiou, G.P. 1983. Management of resistance in arthropods, pp. 769–792,in G.P. Georghiou and T. Saito (eds.). Pest Resistance to Pesticides. Plenum Press, New York.

    Google Scholar 

  • Goldman, P., 1982. Role of the intestinal flora, pp. 323–337,in W.B. Jakoby, J.R. Bend, and J. Caldwell (eds.). Metabolic Basis of Detoxication; Metabolism of Functional Groups. Academic Press, New York.

    Google Scholar 

  • Gould, F. 1984. Role of behavior in the evolution of insect adaptation to insecticides and resistant host plants.Butt. Entomol. Soc. Am. 30:34–41.

    Google Scholar 

  • Gould, S.J., andVrba, E.S. 1982. Exaptation—a missing term in the science of form.Paleobiology 8:4–15.

    Google Scholar 

  • Gunderson, C.A., Samuelian, J.H., Evans, C.K., andBrattsten, L.B. 1985. Effects of the mint monoterpene pulegone onSpodoptera eridania (Lepidoptera: Noctuidae).Environ. Entomol. 14:859–863.

    Google Scholar 

  • Gunderson, C.A., Brattsten, L.B., andFleming, J.T. 1986. Microsomal oxidase and glutathione transferase as factors influencing the effects of pulegone in southern and fall armyworm larvae.Pestic. Biochem. Physiol. 26:238–249.

    Google Scholar 

  • Haunerland, N.H., andBowers, W.S. 1986a. Arylphorin from the corn earworm,Heliothis zea. Insect Biochem.16:617–625.

    Google Scholar 

  • Haunerland, N.H., andBowers, W.S. 1986b. Binding of insecticides to lipophorin and arylphorin, two hemolymph proteins ofHeliothis zea.Arch. Insect. Biochem. Physiol. 3:87–96.

    Google Scholar 

  • Heyman, E. 1980. Carboxylesterases and amidases, pp. 291–323in W.B. Jakoby (ed.). Enzymatic Basis of Detoxication, Vol. 2. Academic Press, New York.

    Google Scholar 

  • Hodoson, E. 1983. The significance of cytochrome P-450 in insects.Insect Biochem. 13:237–246.

    Google Scholar 

  • Hodoson, E. 1985. Microsomal monooxygenases, pp. 206–321,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Pergamon Press, New York.

    Google Scholar 

  • Ishaaya, I., andCasida, I.E. 1980. Properties and significance of esterases hydrolyzing permethrin and cypermethrin inTrichplusia ni larval gut and integument.Pestic. Biochem. Physiol. 14:178–184.

    Google Scholar 

  • Jakoby, W.B, andHabig, W.H. 1980. Glutathione transferases, pp. 63–94,in W.B. Jakoby (ed.). Enzymatic Basis of Detoxication, Vol. 2. Academic Press, New York.

    Google Scholar 

  • Jones, C.G. 1984. Microorganisms as mediators of plant resource exploitation by insect herbivores, pp. 54–99,in P.W. Price, C.N. Slobodchikoff, and W.S. Gaud (eds.). A New Ecology. Wiley, New York.

    Google Scholar 

  • Krieger, R.I, andWilkinson, C.F. 1969. Microsomal mixed-function oxidases in insects. 1. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridania).Biochem. Pharmacol. 18:1403–1415.

    Google Scholar 

  • Kukor, J.J., andMartin, M.M. 1983. Aquisition of digestive enzymes by siricid woodwasps from their fungal symbiont.Science 220:1161–1163.

    Google Scholar 

  • Levenbook, L., 1985. Insect storage proteins, pp. 307–346,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 10. Pergamon Press, New York.

    Google Scholar 

  • Levine, B.S., andMurphy, S.D. 1977. Effect of piperonyl butoxide on the metabolism of dimethyl and diethyl phosphorothionate insecticides.Toxicol. Appl. Pharmacol. 40:393–406.

    Google Scholar 

  • Long, K.Y., andBrattsten, L.B. 1982. Is rhodanese important in the detoxification of dietary cyanide in southern armyworm (Spodopteraeridania Cramer) larvae?Insect Biochem. 12:367–375.

    Google Scholar 

  • Lund, A.E. 1985. Insecticides: effects on the nervous system, pp. 9–56,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon Press, New York.

    Google Scholar 

  • Menguelle, J., Fuzeau-Braesch, S., andPapin, C. 1985. The influence of glutathione on resistance to lindane of the migratory locustLocusta migratoria cinerascens.Comp. Biochem. Physiol. 80C:401–405.

    Google Scholar 

  • Moore, L.V., andScudder, G.G.E. 1985. Selective sequestration of milkweek (Asclepias sp.) cardenolides inOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae).J. Chem. Ecol. 11:667–687.

    Google Scholar 

  • Motoyama, N., andDauterman, W.C. 1980. GlutathioneS-transferases: Their role in the metabolism of organophosphorus insecticides.Rev. Biochem. Toxicol. 2:49–69.

    Google Scholar 

  • Mullin, C.A. 1985. Detoxification enzyme relationships in arthropods of differing feeding strategies, pp. 267–278,in P.A. Hedin (ed.). Bioregulators for Pest Control, Symp. Ser. No. 276. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Mullin, C.A. 1986. Adaptive divergence of chewing and sucking arthropods to plant allelochemicals, pp. 175–209,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Mullin, C.A. 1988. Adaptive relationships of epoxide hydrolase in herbivorous insects.J. Chem. Ecol. 14:1867–1888.

    Google Scholar 

  • Oppenoorth, F.J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon Press, New York.

    Google Scholar 

  • Oppenoorth, F.J., Rupes, V., ElBashir, S., Houx, N.W.H., andVoerman, S. 1972. Glutathione-dependent degradation of parathion and its significance for resistance in the house fly.Pestic. Biochem. Physiol. 2:262–269.

    Google Scholar 

  • Paulson, G.D. 1982. The effect of conjugation on the biological activity of foreign compounds in animals, pp. 185–214,in D.H. Hutson and T.R. Roberts (eds.). Progress in Pesticide Biochemistry, Vol. 2. Wiley, New York.

    Google Scholar 

  • Perry, A., andHoskins, W. 1950. Detoxification of DDT by resistant house flies and inhibition of this process by piperonyl cyclonene.Science 111:600–601.

    Google Scholar 

  • Pimentel, D., andBellotti, A.C. 1976. Parasite-host systems and genetic stability.Am. Nat. 110:877–888.

    Google Scholar 

  • Pluthero, F.G., andSingh, R.S. 1984. Insect behavioral responses to toxins: Practical and evolutionary considerations.Can. Entomol. 116:57–68.

    Google Scholar 

  • Potts, R.C., andHewitt, P.H. 1974. Some properties and reaction characteristics of the partially purified cellulase from the termiteTrinervitermes trinervoides (Nasutitermitinae).Comp. Biochem. Physiol. 47B:327–337.

    Google Scholar 

  • Raffa, K.F. 1986. Devising pest management tactics based on plant defense mechanisms, theoretical and practical considerations, pp. 301–327,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Robinson, D. 1956. The fluorometric determination of β-glucosidase: Its occurrence in the tissues of animals, including insects.Biochem. J. 63:39–44.

    Google Scholar 

  • Ryan, D.E., Thomas, P.E., Reik, L.M., andLevin, W. 1982. Purification, characterization and regulation of five rat hepatic microsomal cytochrome P-450 isoenzymes.Xenobiotica 12:727–744.

    Google Scholar 

  • Scheune, R.R. 1978. Mammalian Metabolism of Plant Xenobiotics. Academic Press, New York.

    Google Scholar 

  • Scriber, J.M. 1981. Sequential diets, metabolic costs, and growth ofSpodoptera eridania feeding upon dill, lima bean, and cabbage.Oecologia (Berlin) 51:175–180.

    Google Scholar 

  • Scudder, G.G.E., Moore, L.V., andIsman, M.B. 1986. Sequestration of cardenolides inOncopeltus fasciatus: Morphological and physiological adaptations.J. Chem. Ecol. 12:1171–1187.

    Google Scholar 

  • Self, L.S., Guthrie, F.E., andHodgson, E. 1964. Adaptations of tobacco hornworms to the ingestion of nicotine.J. Insect Physiol. 10:907–914.

    Google Scholar 

  • Shapiro, J.P., Keim, P.S., andLaw, J.H. 1984. Structural studies on lipophorin, an insect lipoprotein.J. Biol. Chem. 259:3680–3685.

    Google Scholar 

  • Soderlund, D.M., Messeguer, A., andBowers, W.S. 1980. Precocene II metabolism in insects: Synthesis of potential metabolites and identification of initial in vitro biotransformation products.J. Agric. Food Chem. 28:724–731.

    Google Scholar 

  • SooHoo, C.F., andFraenkel, G. 1966. Consumption, digestion, and utilization of food plants by a polyphagous insect,Prodenia eridania Cramer.Insect Physiol, 12:711–730.

    Google Scholar 

  • Tallamy, D.W. 1985. Squash beetle feeding behavior: An adaptation against induced cucurbit defenses.Ecology 66:1574–1579.

    Google Scholar 

  • Tallamy, D.W. 1986. Behavioral adaptations in insects to plant allelochemicals, pp. 273–300,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Teas, H.J. 1967. Cycasin synthesis inSeirarctia echo (Lepidoptera) larvae fed methylazoxymethanol.Biochem. Biophys. Res. Commun. 26:686–690.

    Google Scholar 

  • Terriere, L.C. 1983. Enzyme induction, gene amplification and insect resistance to insecticides, pp. 265–297,in G.P. Georghiou and T. Saito (eds.). Pest Resistance to Pesticides. Plenum Press, New York.

    Google Scholar 

  • Terriere, L.C. 1984. Induction of detoxication enzymes in insects.Annu. Rev. Entomol. 29:71–88.

    Google Scholar 

  • Trammell, D.I. 1982.In vitro metabolism of (+)-pulegone, (−)-carvone, and (+)-carvone by southern armyworm (Spodoptera eridania) microsomes, MS thesis. Georgia Institute of Technology, Atlanta.

    Google Scholar 

  • Vaughan, G.L., andJungreis, A.M. 1977. Insensitivity of lepidopteran tissues to ouabain: Physiological mechanisms for protection from cardiac glycosides.J. Insect Physiol. 23:585–589.

    Google Scholar 

  • Wadleigh, R.W., andYu, S.J. 1987. Glutathione transferase activity of fall armyworm larvae towards α,β-unsaturated carbonyl allelochemicals and its induction by allelochemicals.Insect Biochem. 17:759–764.

    Google Scholar 

  • Wilkinson, C.F. 1980. The metabolism of xenobiotics: A study in biochemical evolution, pp. 251–267,in H.R. Witschi (ed.). The Scientific Basis of Toxicity Assessment. Elsevier, New York.

    Google Scholar 

  • Wilkinson, C.F. 1983. Role of mixed-function oxidases in insecticide resistance, pp. 175–206,in G.P. Georghiou and T. Saito (eds.). Pest Resistance to Pesticides. Plenum Press, New York.

    Google Scholar 

  • Wilkinson, C.F. 1984a. Biochemical nature of pesticide resistance in insects, pp. 311–326,in J.L. Hilton (ed.). Agricultural Chemicals of the Future. Rowman and Heldublisher, Totova.

    Google Scholar 

  • Wilkinson, C.F. 1984b. Metabolism and selective toxicity in an environmental context, pp. 133–147,in J. Caldwell and G.D. Paulson (eds.). Foreign Compound Metabolism. Taylor and Francis, Philadelphia.

    Google Scholar 

  • Wilkinson, C.F. 1986. Xenobiotic conjugation in insects, pp. 48–61,in G.D. Paulson, J. Caldwell, D.H. Hutson, and J.J. Menn (eds.). Xenobiotic Conjugation Chemistry, Symp. Ser. No. 299, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Wilkinson, C.F., andBrattsten, L.B. 1972. Microsomal drug metabolizing enzymes in insects.Drug Metab. Rev. 1:153–227.

    Google Scholar 

  • Williams, R.T. 1974. Interspecies variation in the metabolism of xenobiotics.Biochem. Soc. Trans. 2:359–377.

    Google Scholar 

  • Yu, S.J. 1986. Consequences of induction of foreign compound-metabolizing enzymes in insects, pp. 153–174,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brattsten, L.B. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J Chem Ecol 14, 1919–1939 (1988). https://doi.org/10.1007/BF01013486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013486

Key words

Navigation