Skip to main content
Log in

Gangliosides in SV-40-transformed cells derived from Tay-Sachs disease fetal brain

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

A human glial brain cell line derived from a Tay-Sachs disease fetal cerebellum was transformed with SV-40 virus in order to obtain a transformed brain cell line which reflected the characteristics of the disease. It was shown that the transformed TSD cell line maintained an elevated level of GM2 which was similar to that shown by the nontransformed precursor. In addition, the TSD transformed line lacked hexosaminidase A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brooks, S. E., Amsterdam, D., Hoffman, L. M., Adachi, M., and Schneck, L. (1979). Cytology, growth characteristics and cellular alterations following SV-40-induced transformation of human foetal brain cells derived from a GM2 gangliosidosis and control.J. Cell Sci. 38: 211–223.

    Google Scholar 

  • Brooks, S. E., Hoffman, L. M., Adachi, M., Amsterdam, D., and Schneck, L. (1980). Enzyme replacement treatment for Tay-Sachs disease brain cells in culture utilizing concanavalin A-mediated hexosaminidase A uptake: Biochemical and morphological evidence of GM2 mobilization.Acta Neuro-pathol. (Berl.) 50: 9–17.

    Google Scholar 

  • Brooks, S. E., Hoffman, L. M., Amsterdam, D., Adachi, M., and Schneck, L. (1981). Long term intracellular retention of hexosaminidase A by Tay-Sachs disease brain and lung cells in vitro.J. Neurosci. Res. 6: 381–388.

    Google Scholar 

  • Chambers, R. E., and Clamp, J. R. (1971). An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials.Biochem. J. 125: 1009–1018.

    Google Scholar 

  • Dawson, G., Matalon, R., and Dorfman, A. (1972). Glycosphingolipids in cultured human fibroblasts. II. Characterization and metabolism in fibroblasts from patients with errors of glycosphingolipid and mucopolysaccharide metabolism.J. Biol. Chem. 247: 5951–5958.

    Google Scholar 

  • Hakomori, S. (1975) Structures and organization of cell surface dependency on cell growth and malignant transformation.Biochim. Biophys. Acta 417: 55–89.

    Google Scholar 

  • Hakomori, S. (1985). Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives.Cancer Res. 45: 2405–2414.

    Google Scholar 

  • Hoffman, L. M., Amsterdam, D., and Schneck, L. (1976). GM2 ganglioside in fetal Tay-Sachs disease brain cultures: A model system for the disease.Brain Res. 111: 109–117.

    Google Scholar 

  • Hoffman, L. M., Amsterdam, D., Brooks, S. E., and Schneck, L. (1977). Glycosphingolipids in fetal Tay-Sachs disease brain and lung cultures.J. Neurochem. 29: 551–559.

    Google Scholar 

  • Hoffman, L. M., Brooks, S. E., Amsterdam, D., Oropello, J., and Schneck, L. (1980). Tay-Sachs disease brain cells in culture: Mobilization of stored GM2 after concanavalin-A mediated uptake of hexo-saminidase A.J. Neurosci. Res. 5: 413–417.

    Google Scholar 

  • Hoffman, L. M., Brooks, S. E., and Schneck, L. (1981). Human fetal brain cells in culture: Increase in GM2 ganglioside after SV-40 transformation.Biochim. Biophys. Acta 665: 359–361.

    Google Scholar 

  • Hoffman, L. M., Brooks, S. E., and Schneck, L. (1982). Tay-Sachs disease and normal cerebellar cells in culture: Elevated levels of lysosomal enzymes in Tay-Sachs disease cells.J. Neurosci. Res. 8: 49–55.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Fain, A. L., and Randall, R. J. (1951). Protein measurement with folin phenol reagent.J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Momoi, T., Furuya, T., Suzuki, Y., Sato, H., and Yamaguchi, N. (1985). In vitro establishment of human fibroblasts of lysosomal diseases. GM1 -gangliosidosis and Sandhoff disease, by transformation with origin-minus DNA,Biosci. Rep. 5: 267–273.

    Google Scholar 

  • Natoli, E. J., Livingston, P. O., Pukel, C. S., Lloyd, K. O., Wiegandt, H., Szaley, J., Oettgen, H. F., and Old, L. J. (1986). A murine monoclonal antibody detecting N-acetyl and N-glycolyl-GM2: Characterization of cell surface reactivity.Cancer Res. 46: 4116–4120.

    Google Scholar 

  • O'Brien, J. S. (1983). The gangliosidoses. In Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S., Goldstein, J. L., and Brown, M. S. (eds.),Metabolic Basic of Inherited Dieasease, McGrow-Hill, New York, pp. 945–969.

    Google Scholar 

  • Perle, G., and Saifer, A. (1975). Methodology: Enzyme chemistry. In Volk, B. W., and Schneck, L. (eds.),The Gangliosidoses, Plenum Press, New York, pp. 233–248.

    Google Scholar 

  • Pope, J. H., and Rowe, W. P. (1964). Detection of specific antigen in SV-40-transformed cells by immunofluorescence.J. Exp. Med. 120: 121–127.

    Google Scholar 

  • Pullarkat, R. K., Reha, H., and Beratis, N. G. (1980). Ganglioside accumulation in cultured skin fibroblasts from gangliosidosis patients.Biochem. Biophys. Res. Commun. 92: 149–154.

    Google Scholar 

  • Raghavan, S., Krusell, A., Lyerla, T. A., Bremer, E. G., and Kolodny, E. H. (1985). GM2 metabolism in cultured skin fibroblasts: Unambiguous diagnosis of GM2-gangliosidosis.Biochim. Biophys. Acta 834: 238–248.

    Google Scholar 

  • Salvayre, R., Maret, A., Negre, G., Lenoir, M., Vuillaume, M., Icart, J., Didier, J., and Douste-Blazy, L. (1983). Molecular forms ofβ-N-acetylhexoxaminidase in Epstein-Barr virus-transformed lymphoid cell lines from normal subjects and patients with Tay-Sachs disease.Eur. J. Biochem. 133: 627–633.

    Google Scholar 

  • Sandhoff, K., Harzer, K., Wassle, W., and Jatzkewitz, H. (1971). Enzyme alterations and lipid storage in three variants of Tay-Sachs disease.J. Neurochem. 18: 2469–2489.

    Google Scholar 

  • Smid, F., and Reinisova, J. (1973). A densitometric method for the determination of gangliosides after their separation by thin layer chromatography and detection with resorcinol reagent.J. Chromatogr. 86: 200–204.

    Google Scholar 

  • Sonderfeld, S., Conzelmann, E., Schwarzmann, G., Burg, J., Hinrichs, U., and Sandhoff, K. (1985). Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects.Eur. J. Biochem. 149: 247–255.

    Google Scholar 

  • Suzuki, K. (1965). The pattern of mammalian brain gangliosides. Part 2. Evaluation of the extraction procedures, post-mortem changes and the effect of formalin preservation.J. Neurochem. 12: 629–638.

    Google Scholar 

  • Svennerholm, L. (1963). Chromatographic separation of human brain gangliosides.J. Neurochem. 10: 613–623.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, L.M., Brooks, S.E., Stein, M.R. et al. Gangliosides in SV-40-transformed cells derived from Tay-Sachs disease fetal brain. Metabolic Brain Disease 4, 87–93 (1989). https://doi.org/10.1007/BF00999386

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999386

Key words

Navigation