Skip to main content
Log in

Statistical and dimensional analysis of the neural representation of the acoustic biotope of the frog

  • Articles
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The field of investigation is the neural representation of acoustic stimuli occurring in the natural environment of the frog. The point of departure is the description of a stimulus ensemble consisting of natural sounds: the acoustic biotope. A relation of statistical and dimensional structure of the acoustic biotope is indicated. The animal used in the neurophysiological experiments is the grass frog,Rana temporaria L.; microelectrode recordings are made in the auditory midbrain. A method is described to determine the existence of a relation between acoustic stimulus and neural events. The form of this relation has been investigated by first- and second-order stimulus-event correlation. While the first one does not give significant results, the second one leads to the spectrotemporal receptive field of the neuron for natural stimuli. Questions are formulated to estimate the value of this receptive field as a functional descriptor of the neuron. Finally, an outline is sketched for a synthetic construction of the bioacoustic space from neuroacoustic subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craik, K.,The Nature of Explanation Cambridge University Press, Cambridge, 1943.

    Google Scholar 

  2. McCulloch, W. S.,Embodiments of Mind. M.I.T. Press, Cambridge, Mass., 1965.

    Google Scholar 

  3. Kiang, N.Y.-S., Watanabe, T., Thomas, E. C., and Clark, L. F.,Discharge Patterns of Single Fibers in the Cat's Auditory Nerve M.I.T. Press, Cambridge, Mass., 1965.

    Google Scholar 

  4. Keidel, W. D., and Neff, W. D. (eds.),Handbook of Sensory Physiology. Vol. V/2, Auditory System: Physiology (CNS), Behavioral Studies, Psychoacoustics Springer, Berlin/Heidelberg/New York, 1975.

    Google Scholar 

  5. Dickson, J. W., and Gerstein, G. L., Interactions between neurons in auditory cortex of the cat.J. Neurophysiol. 37:1239–1261, 1974.

    Google Scholar 

  6. Evans, E. F., Neural processes for the detection of acoustic patterns and for sound localization.The Neurosciences, Third Study Program, (F. O. Schmidt and F. G. Worden, eds.), M.I.T. Press, Cambridge, Mass., 1974, pp. 131–145.

    Google Scholar 

  7. van Gisbergen, J. A. M., Spectral and temporal characteristics of activation and suppression of units in the cochlear nuclei of the anaesthetised cat.Exp. Brain Res. 23:367–386, 1975.

    Google Scholar 

  8. Worden, F. G., and Galambos, R. (eds.), Auditory processing of biologically significant sounds.Neurosci. Res. Prog. Bull., Vol. 10, Neurosciences Research Program, Brookline, Mass., 1972.

  9. Bullock, T. H., (ed. ), Recognition of complex acoustic signals.Life Sciences Res. Rep., Vol. 5, Springer, Berlin/Heidelberg/New York, 1977.

  10. Ewert, J.-P.,Neuroethology. An Introduction to the Neurophysiological Fundamentals of Behavior. Springer, Berlin/Heidelberg/New York, 1980.

    Google Scholar 

  11. Arbib, M. A.,The Metaphorical Brain. An Introduction to Cybernetics as Artificial Intelligence and Brain Theory Wiley Interscience, New York/London/Sydney/Toronto, 1972.

    Google Scholar 

  12. Wiener, N,Nonlinear Problems in Random Theory M.I.T. Press, Cambridge, Mass., Wiley, New York, 1958.

    Google Scholar 

  13. Barrett, J. F., The use of functionals in the analysis of non-linear physical systems.J. Electronics and Control 15:567–615, 1963.

    Google Scholar 

  14. Lee, Y. W., and Schetzen, M., Measurement of the Wiener kernels of a nonlinear system by cross-correlation.Int. J. Control 2:237–254, 1965.

    Google Scholar 

  15. Marmarelis, P. Z., and Marmarelis, V. Z.,Analysis of Physiological Systems. The White-Noise Approach. Plenum Press, New York/London, 1978.

    Google Scholar 

  16. de Boer, E., and Kuyper, P., Triggered correlation.IEEE Trans. Biomed. Eng. BME-15:169–179, 1968.

    Google Scholar 

  17. Møller, A. R., Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudo random noise.Brain Res. 57:443–456, 1973.

    Google Scholar 

  18. de Boer, E., and de Jongh, H. R., On cochlear encoding: Potentialities and limitations of the reverse-correlation technique.J. Acoust. Soc. Am. 63:115–135, 1978.

    Google Scholar 

  19. Johannesma, P. I. M., The pre-response stimulus ensemble of neurons in the cochlear nucleus.Proc. of the IPO Symp. on Hearing Theory (B. L. Cardozo, ed.), Eindhoven, The Netherlands, 1972, pp 58–69.

  20. Grashuis, J. L., The pre-event stimulus ensemble: An analysis of the stimulus-response relation for complex stimuli applied to auditory neurons. Ph.D. dissertation, Nijmegen, The Netherlands, 1974.

  21. Aertsen, A. M. H. J., Spectro-temporal characterization of auditory neurons. Ph.D. dissertation, Nijmegen, The Netherlands, 1981.

  22. van Gelder, J. J., Evers, P. M. G., and Maagnus, G. J. M., Calling and associated behaviour of the common frog,Rana temporaria, during breeding activity.J. Anim. Ecol. 47:667–676, 1978.

    Google Scholar 

  23. Aertsen, A. M. H. J., Johannesma, P. I. M., and Hermes, D. J., Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli.Biol. Cybern. 38:235–248, 1980.

    Google Scholar 

  24. Aertsen, A. M. H. J., and Johannesma, P. I. M., The spectro-temporal receptive field: A functional characteristic of auditory neurons.Biol. Cybern. 42:133–143, 1981.

    Google Scholar 

  25. Aertsen, A. M. H. J., and Johannesma, P. I. M., A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli.Biol. Cybern. 42:145–156, 1981.

    Google Scholar 

  26. Aertsen, A. M. H. J., and Johannesma, P. I. M., Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli.Biol. Cybern. 38:223–234, 1980.

    Google Scholar 

  27. Aertsen, A. M. H. J., Olders, J. H. J., and Johannesma, P. I. M., Spectro-temporal receptive fields of auditory neurons in the grassfrog. III. Analysis of the stimulus-event relation for natural stimuli.Biol. Cybern. 39:195–209, 1981.

    Google Scholar 

  28. Aertsen, A. M. H. J., Smolders, J. W. T., and Johannesma, P. I. M., Neural representation of the Acoustic Biotope: On the existence of stimulus-event relations for sensory neurons.Biol. Cybern. 32:175–185, 1979.

    Google Scholar 

  29. Pedersen, J. G., On the existence of stimulus-event relations for sensory neurons: A statistical method.Biol. Cybern. 38:201–212, 1980.

    Google Scholar 

  30. Marmarelis, P. Z., and McCann, G. D., Development and application of white-noise modeling techniques for studies of insect visual nervous system.Kybernetik 12:74–89, 1973.

    Google Scholar 

  31. Palm, G., and Poggio, T., The Volterra representation and the Wiener expansion: Validity and pitfalls.SIAM J. Appl. Math. 33:195–216, 1977.

    Google Scholar 

  32. Palm, G., On representation and approximation of nonlinear systems.Biol. Cybern. 31:119–124, 1978.

    Google Scholar 

  33. Gielen, C. C. A. M., Spatio-temporal and chromatic properties of visual neurones in the Rhesus monkey geniculate nucleus. Ph.D. dissertation, Nijmegen, The Netherlands, 1980.

  34. de Boer, E., Polynomial correlation.Proc. IEEE 67:317–318, 1979.

    Google Scholar 

  35. Johannesma, P. I. M., Aertsen, A. M. H. J., Cranen, L. I. J., and van Erning, L. J. T., The Phonochrome; a coherent spectro-temporal representation of sound.Hearing Res. 5:123–145, 1981.

    Google Scholar 

  36. Johannesma, P. I. M., Functional identification of auditory neurons based on stimulus-event correlation.Psychophysical, Physiological and Behavioural Studies in Hearing (G. v.d. Brink and F. A. Bilsen, eds.), Delft University Press, Delft, 1980, pp. 77–84.

    Google Scholar 

  37. van Gisbergen, J. A. M., Grashuis, J. L., Johannesma, P. I. M., and Vendrik, A. J. H., Neurons in the cochlear nucleus investigated with tone and noise stimuli.Exp. Brain Res. 23:387–406, 1975.

    Google Scholar 

  38. Victor, J., and Shapley, R., A method of nonlinear analysis in the frequency domain.Biophys. J. 29:459–484, 1980.

    Google Scholar 

  39. Eggermont, J. J., Aertsen, A. M. H. J., Hermes, D. J., and Johannesma, P. I. M., Spectro-temporal characterization of auditory neurons: Redundant or necessary?Hearing Res. 5:109–121, 1981.

    Google Scholar 

  40. Hermes, D. J., Aertsen, A. M. H. J., Johannesma, P. I. M., and Eggermont, J. J., Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grassfrog (Rana temporaria L.), investigated with noise stimuli.Hearing Res. 5:147–178, 1981.

    Google Scholar 

  41. Scheich, H., Central processing of complex sounds and feature analysis.Recognition of Complex Acoustic Signals, Life Sciences Res. Rep., Vol. 5 (T. H. Bullock, ed.), Springer, Berlin/Heidelberg/New York, 1977. pp. 161–182.

    Google Scholar 

  42. Johannesma, P. I. M., Neural representation of sensory stimuli and sensory interpretation of neural activity.Adv. Physiol. Sci. 30:103–125, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesma, P., Aertsen, A. Statistical and dimensional analysis of the neural representation of the acoustic biotope of the frog. J Med Syst 6, 399–421 (1982). https://doi.org/10.1007/BF00992882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00992882

Keywords

Navigation