Skip to main content
Log in

The size heterogeneity of human lysyl oxidase mRNA is due to alternate polyadenylation site and not alternate exon usage

  • Research Articles
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have isolated the entire gene coding for human lysyl oxidase. Coding and untranslated domains of human lysyl oxidase mRNA were found in 7 exons, distributed throughout approximately 14kb of human genomic DNA. The appearance of exon sequences in lysyl oxidase mRNA in several human tissues was determined using a reverse transcriptase-PCR assay. In contrast to a previous report, this analysis has unambiguously shown that the size heterogeneity of lysyl oxidase mRNA was not due to alternate usage of any of the exons of the lysyl oxidase gene. Moreover, DNA sequence analysis of the entire 3.8 kb 3′-untranslated region (UTR) within exon 7 revealed multiple poly-adenylation sites which were shown to be differentially expressed in human skin fibroblasts. This differential usage of polyadenylation sites within the 3′-UTR explains the appearance of multiple lysyl oxidase mRNAs of different sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kagan HM & Trackman PC (1991) Am. J. Resp. Cell Mol. Biol. 3: 206–210

    Google Scholar 

  2. Parks WC, Pierce RA, Lee KA & R. P. Mecham (1993) Adv. Mol. Cell Biol. 6: 133–181

    Google Scholar 

  3. Trackman PC, Pratt AM, Wolanski A, Tang S-S, Offner GD, Troxler RF & Kagan HM (1990) Biochem 29: 4863–4870

    Google Scholar 

  4. Contente S, Csiszar K, Kenyon K & Friedman RM (1993) Genomics 16: 395–400

    Google Scholar 

  5. Mariani TM, Trackman PC, Kagan HM, Eddy RL, Shows TB, Boyd CD & Deak SD (1992) Matrix, 12: 242–248.

    Google Scholar 

  6. Hamalainen ER, Jones TA, Sheer D, Taskinen K, Pihlajaniemi T. & Kivirikko KI (1991) Genomics, 11: 508–516.

    Google Scholar 

  7. Trackman PC, Bedell-Hogan D, Tang J & Kagan HM (1992) J. Biol. Chem. 267: 8666–8671

    Google Scholar 

  8. Kagan HM, Sullivan KA, Olsson TA, III and Cronlund AL (1979) Biochem. J. 177: 203–214.

    Google Scholar 

  9. Cronlund AL & Kagan HM (1986) Connect. Tiss. Res. 15: 173–185.

    Google Scholar 

  10. Almassian B, Trackman PC, Iguchi H, Boak A, Calvaresi D & Kagan HM (1991) Connect. Tiss. Ress. 25: 197–208.

    Google Scholar 

  11. Shacketon DR & Hulmes DJS (1990) Biochem. J. 266: 917–919.

    Google Scholar 

  12. Kuivaniemi H, Savolainen ER & Kivirikko KI (1984) J. Biol. Chem., 259: 6996–7002

    Google Scholar 

  13. Sullivan KA & Kagan HM (1982) J. Biol. Chem. 257: 13520–13526

    Google Scholar 

  14. Kuivaniemi H (1985) Biochem. J. 230: 639–643

    Google Scholar 

  15. Williams MA & Kagan HM (1985) Anal. Biochem. 149: 430–437

    Google Scholar 

  16. Svinarich DM, Twomey TA, Macauley SP, Krebs CJ, Yang TP & Krawetz SA (1992) J. Biol. Chem. 267: 14382–14387

    Google Scholar 

  17. Csiszar K, Mariani TJ, Gosin JS, Deak SB & Boyd CD (1993) Genomics 16: 401–406.

    Google Scholar 

  18. Berget SM (1984) Nature 309: 179–182.

    Google Scholar 

  19. McDevitt MA, Hart RP, Wong WN & Nevins JR (1986) EMBO. J. 5: 2907–2913.

    Google Scholar 

  20. Wilusz J & Shenk T (1990) Mol. Cell. Biol 10: 6397–6407.

    Google Scholar 

  21. Gacheru SN, Trackman PC, Shah MA, O'Gara CY, Spacciapoli P, Greenaway FT & Kagan HM (1990) 265: 19022–19027.

  22. Deak SB, Pierce RA, Belsky SA, Riley DJ & Boyd CD (1988) J. Biol. Chem. 263: 13504–13507.

    Google Scholar 

  23. Indik Z., Yeh H., Ornstein-Goldstein N. & Rosenbloom J (1990) In: Extracellular Matrix Genes (Editors: Sandell LJ and Boyd CD) Academic Press, San Diego, New York, pages 221–250

    Google Scholar 

  24. Boyd CD, Pierce RA, Schwarzbauer JE, Doege K & Sandell LJ (1993) Matrix 13: 457–469

    Google Scholar 

  25. Kuivaniemi H, Savolainen ER & Kivirikko KI (1984) J. Biol. Chem. 259: 6996–7002

    Google Scholar 

  26. Sandell LJ & Boyd CD (1990) In: Extracellular Matrix Genes (Editors: Sandell LJ and Boyd CD) Academic Press, San Diego, New York, pages 1–56

    Google Scholar 

  27. Brawerman G. (1987) Cell 48: 5–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, C.D., Mariani, T.J., Kim, Y. et al. The size heterogeneity of human lysyl oxidase mRNA is due to alternate polyadenylation site and not alternate exon usage. Mol Biol Rep 21, 95–103 (1995). https://doi.org/10.1007/BF00986499

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986499

Key words

Navigation