Skip to main content
Log in

Heterogeneity of the internal transcribed spacer 1 (ITS1) inTulipa (Liliaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Heterogeneity of the internal transcribed spacer ITS1 of the rDNA within individuals ofTulipa gesneriana L.,T. kaufmanniana Regel, and their interspecific hybrids was analyzed by PCRRFLP, using the polymorphic restriction enzymesRsaI andHinfI, and by nucleotide sequence analysis. In most cases, the sum of the sizes of the restriction fragments was higher than the entire length of the undigested ITS fragment, indicating heterogeneity at the restriction sites within an individual. Differences in band intensities within the restriction patterns indicate the occurrence of variation in copy number of these different ITS1 variants within individuals. Automated sequencing without a visual inspection often failed to detect existing heterogeneity within sequences, resulting in a discrepancy between the sequencing and restriction analysis results. By visual interpretation of the sequences, the restriction patterns could mostly be predicted well. Fluorescence in situ hybridization (FISH) experiments in fourTulipa species revealed the occurrence of several rDNA spots. The number of rDNA loci varied from seven inT. gesneriana ‘Christmas Marvel’ to ten inT. australis Link. This might explain the occurrence of heterogeneity in ITS sequences inTulipa, as homogenization of variants has to take place over different loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels R., Honeycutt R. L. (1986) rDNA: evolution over a billion years. In: Dutta S. K. (ed.) DNA systematics, vol. II. Boca Raton, FL, CRC Press, pp. 81–135.

    Google Scholar 

  • Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Natl. Acad. Sci., USA 77: 7323–7327.

    Google Scholar 

  • Badaeva E. D., Friebe B., Gill B. S. (1996) Genome differentiation inAegilops. 2. Physical mapping of 5S and 18–26S ribosomal RNA gene families in diploid species. Genome 39: 1150–1158.

    Google Scholar 

  • Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Garden 82: 247–277.

    Google Scholar 

  • Bennett M. D., Smith J. B. (1976) Nuclear DNA amounts in Angiosperms. Phil. Trans. R. Soc. Lond. B 274: 227–274.

    Google Scholar 

  • Bennett M. D., Smith J. B. (1991) Nuclear DNA amounts in Angiosperms. Phil. Trans. R. Soc. Lond. B 334: 309–345.

    Google Scholar 

  • Bennett M. D., Leitch I. J. (1995) Nuclear DNA amounts in Angiosperms. Ann. Bot. 76: 113–176.

    Google Scholar 

  • Brown G. R., Amarasinghe V., Kiss G., Carlson J. E. (1993) Preliminary karyotype and chromosomal localization of ribosomal DNA sites in white spruce using fluorescence in situ hybridization. Genome 36: 310–316.

    Google Scholar 

  • Buckler E. S. IV., Holtsford T. P. (1996)Zea systematics: ribosomal evidence. Mol. Biol. Evol. 13: 612–622.

    Google Scholar 

  • Buitendijk J. H., Boon E. J., Ramanna M. S. (1997) Nuclear DNA content in twelve species ofAlstroemeria L. and some of their hybrids. Ann. Bot. 79: 343–353.

    Google Scholar 

  • Campbell C. S., Baldwin B. G., Donoghue M. J., Wojciechowski M. F. (1993) Toward a phylogeny ofAmelanchier (Rosaceae: Maloideae): evidence from sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). Am. J. Bot. 80 (Suppl.): abstract 398.

  • Campbell C. S., Wojciechowski M. F., Baldwin B. G., Alice L. A., Donoghue M. J. (1997) Persistent nuclear ribosomal DNA sequence polymorphism in theAmelanchier agamic complex (Rosaceae). Mol. Biol. Evol. 14: 81–90.

    Google Scholar 

  • Crane C. F., Price H. J., Stelly D. M., Czeschin D. G., Jr. (1993) Identification of a homologous chromosome pair by in situ DNA hybridization to ribosomal RNA loci in meiotic chromosomes of cotton (Gossypium hirsutum). Genome 36: 1015–1022.

    Google Scholar 

  • Dover G. (1982) Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117.

    Google Scholar 

  • Dover G. (1986) Molecular drive in multigene families: how biological novelties arise, spread, and are assimilated. Trends in Genetics 2: 159–165.

    Google Scholar 

  • Dover G. (1989) Linkage disequilibrium and molecular drive in the rDNA family. Genetics 122: 249–252.

    Google Scholar 

  • Dvořák J. (1990) Evolution of multigene families: the ribosomal RNA loci of wheat and related species. In: Brown A. H. D., Klegg M. T., Kahler A. L., Weir B. S. (eds.) Plant population genetics, breeding, and genetic resources. Sunderland, Sinauer Associates, pp. 83–97.

    Google Scholar 

  • Edwards K., Johnstone C., Thompson C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19: 1349.

    Google Scholar 

  • Enea V., Corredor V. (1991) The evolution of plasmodial stage-specific rRNA genes is dominated by gene conversion. J. Mol. Evol. 32: 183–186.

    Google Scholar 

  • Furata Y. (1975) Quantitative variation of nuclear DNA in genusAegilops. Jap. J. Genet. 50: 383–392.

    Google Scholar 

  • Gasser R. B., Hoste H. (1995) Genetic markers for closely-related parasitic nematodes. Mol. Cell. Probes 9: 315–320.

    Google Scholar 

  • Gerlach W. L., Bedbrook J. R. (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl. Acids Res. 7: 1869–1885.

    Google Scholar 

  • Goff L. J., Moon D. A., Coleman A. W. (1994) Molecular delineation of species and species relationships in the red algal agarophytesGracilariopsis andGracilaria (Gracilariales). J. Phycol. 30: 521–537.

    Google Scholar 

  • Hamby R. K., Zimmer E. A. (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis P. S., Soltis D. E., Doyle J. J. (eds.) Molecular systematics of plants. Chapman and Hall, New York, pp. 50–91.

    Google Scholar 

  • Hanson R. E., Islam-Faridi M. N., Percival E. A., Crane C. F., Ji Y., McKnight T. D., Stelly D. M., Price H. J. (1996) Distribution of 5S and 18–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105: 55–61.

    Google Scholar 

  • Harlton C. E., Lévesque C. A., Punja Z. K. (1995) Genetic diversity inSclerotium (Athelia) rolfsii and related species. Phytopathol. 85: 1269–1281.

    Google Scholar 

  • Hillis D. M., Dixon M. T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66: 411–453.

    Google Scholar 

  • Hoste H., Chilton N. B., Gasser R. B., Beveridge I. (1995) Differences in the second internal transcribed spacer (ribosomal DNA) between five species ofTrichostrongylus (Nematoda: Trichostrongylidae). Int. J. Parasitol. 25: 75–80.

    Google Scholar 

  • Kamstra S. A., Kuipers A. G. J., De Jeu M. J., Ramanna M. S., Jacobsen E. (1997) Physical localisation of repetitive DNA sequences inAlstroemeria: karyotyping of two species with species-specific and ribosomal DNA. Genome 40: 652–658.

    Google Scholar 

  • Karvonen P., Karjalainen M., Savolainen O. (1993) Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure. Genetica 88: 59–68.

    Google Scholar 

  • Karvonen P., Szmidt A. E., Savolainen O. (1994) Length variation in the internal transcribed spacers of ribosomal DNA inPicea abies and related species. Theor. Appl. Genet. 89: 969–974.

    Google Scholar 

  • Kim K.-J., Jansen R. K. (1994) Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst. Evol. 190: 157–185.

    Google Scholar 

  • Kuipers G. J., Van Os D. P. M., De Jong J. H., Ramanna M. S. (1997) Molecular cytogenetics ofAlstroemeria: identification of parental genomes in interspecific hybrids and characterization of repetitive DNA families in constitutive heterochromatin. Chrom. Res. 5: 31–39.

    Google Scholar 

  • Lubaretz O., Fuchs J., Ahne R., Meister A., Schubert I. (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor. Appl. Genet. 92: 411–416.

    Google Scholar 

  • Nagylaki T. (1984) Evolution of multigene families under interchromosomal gene conversion. Proc. Natl. Acad. Sci., USA 81: 3796–3800.

    Google Scholar 

  • Nagylaki T., Petes T. D. (1982) Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100: 315–337.

    Google Scholar 

  • O'Kane S. L., Schaal B. A., Al-Shehbaz I. A. (1996) The origins ofArabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syst. Bot. 21: 559–566.

    Google Scholar 

  • Perelson A. S., Bell G. I. (1977) Mathematical models for the evolution of multigene families by unequal crossing over. Nature 265: 304–310.

    Google Scholar 

  • Petes T. D. (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19: 765–774.

    Google Scholar 

  • Rogers S. O., Bendich A. J. (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9: 509–520.

    Google Scholar 

  • Sambrook J., Fritsch E. F., Maniatis T. (1989) Molecular cloning: a laboratory manual, second edition. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sanders I. R., Alt M., Groppe K., Boller T., Wiemken A. (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 130: 419–427.

    Google Scholar 

  • Sang T., Crawford D. J., Stuessy T. F. (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci., USA 92: 6813–6817.

    Google Scholar 

  • Smith G. P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–534.

    Google Scholar 

  • Suh Y., Thien L. B., Reeve H. E., Zimmer E. A. (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am. J. Bot. 80: 1042–1055.

    Google Scholar 

  • Szostak J. W., Wu R. (1980) Unequal crossing over in the ribosomal DNA ofSaccharomyces cerevisiae. Nature 284: 426–430.

    Google Scholar 

  • Teoh S. B., Rees H. (1976) Nuclear DNA amounts in populations ofPicea andPinus species. Heredity 36: 123–137.

    Google Scholar 

  • Torres R. A., Ganal M., Hemleben V. (1990) GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNA genes. J. Mol. Evol. 30: 170–181.

    Google Scholar 

  • Wakamiya I., Newton R. J., Johnston J. S., Price H. J. (1993) Genome size and environmental factors in the genusPinus. Am. J. Bot. 80: 1235–1241.

    Google Scholar 

  • Wendel J. F., Schnabel A., Seelanan T. (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci., USA 92: 280–284.

    Google Scholar 

  • Wesson D. M., Porter C. H., Collins F. H. (1992) Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera:Culicidae). Mol. Phylogenet. Evol. 1: 253–269.

    Google Scholar 

  • White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322.

    Google Scholar 

  • Zhuo L., Sajdak S. L., Phillips R. B. (1994) Minimal intraspecific variation in the sequence of the transcribed spacer regions of the ribosomal DNA of lake trout (Salvelinus namaycush). Genome 37: 664–671.

    Google Scholar 

  • Zijlstra C., Lever A. E. M., Uenk B. J., Van Silfhout C. H. (1995) Differences between ITS regions of isolates of root-knot nematodesMeloidogyne hapla andM. chitwoodi. Phytopathol. 85: 1231–1237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booy, G., Van der Schoot, J. & Vosman, B. Heterogeneity of the internal transcribed spacer 1 (ITS1) inTulipa (Liliaceae). Pl Syst Evol 225, 29–41 (2000). https://doi.org/10.1007/BF00985457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985457

Key words

Navigation