Skip to main content
Log in

The impact of species-specific traits and phylogenetic relatedness on allozyme diversity inCarex sect.Phyllostachys (Cyperaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Allozyme variation was examined inCarex sect.Phyllostachys (Cyperaceae) to study the effects of species-specific traits and phylogenetic relatedness on genetic structure. In contrast to the findings of similar studies, genetic variability in thePhyllostachys is poorly correlated with geographic range and putative differences in breeding systems (as inferred from morphology). This suggests that other patterns of evolution, colonization, and gene flow characterize the species found in this section. Fixation indices are negative for all populations suggesting that mechanisms such as disassortative mating and selection are maintaining heterozygous excess within populations. Closely related taxa often exhibit different genetic variability statistics. In some instances, however, clades (e.g.C. jamesii andC. juniperorum) display very similar levels of genetic variability despite marked differences in species-specific traits. Recent speciation coupled with the ability to maintain historical levels of variation within populations may be factors accounting for this phenomenon. Contrary to similar studies, species restricted to known glacial refugia have lower genetic diversity than those species that underwent mass migrations in response to deglaciation. Narrowly endemic species were found to partition their genetic diversity within, as opposed to between populations. The opposite trend was evident in wider ranging congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broyles, S. B., Wyatt, R., 1993: Allozyme diversity and genetic structure in southern Appalachian populations of poke milkweed,Asclepias exaltata. — Syst. Bot.18: 18–30.

    Google Scholar 

  • Bruederle, L. P., Fairbrothers, D. E., 1986: Allozyme variation in populations of theCarex crinita complex (Cyperaceae). — Syst. Bot11: 583–594.

    Google Scholar 

  • , 1991: Genetic differentiation ofCarex flava andCarex viridula in western Europe (Cyperaceae). — Syst. Bot.16: 41–49.

    Google Scholar 

  • Catling, P. M., Reznicek, A. A., Crins, W. J., 1993:Carex juniperorum (Cyperaceae), a new species from northeastern North America, with a key toCarex sect.Phyllostachys. — Syst. Bot.18: 496–501.

    Google Scholar 

  • Cosner, M. E., Crawford, D. J., 1994: Comparisons of isozyme diversity in three rare species ofCoreopsis (Asteraceae). — Syst. Bot.19: 350–358.

    Google Scholar 

  • Crawford, D. J., 1985: Electrophoretic data and plant speciation. — Syst. Bot.10: 405–416.

    Google Scholar 

  • , 1985: Allozyme variation within and betweenLasthenia minor and its derivative species,L. maritima (Asteraceae). — Amer. J. Bot72: 1177–1184.

    Google Scholar 

  • Crins, W. J., 1990: Phylogenetic considerations below the sectional level inCarex. — Canad. J. Bot.68: 1433–1440.

    Google Scholar 

  • , in prep:Carex sect.Phyllostachys. — InFlora of North America Editorial Committee, (Eds): 1993+: Flora of North America north of Mexico.3+ vols. — New York: Oxford University Press. Vol.24.

    Google Scholar 

  • Desrochers, A. M., Bohm, B. A., 1995: Biosystematic study ofLasthenia californica (Asteraceae). — Syst. Bot.20: 65–84.

    Google Scholar 

  • Edwards, A. L., Wyatt, R., 1994: Population genetics of the rareAsclepias texana and its widespread sister species,A. perennis. — Syst. Bot.19: 291–307.

    Google Scholar 

  • Elisens, W. J., Crawford, D. J., 1988: Genetic variation and differentiation in the genusMabrya (Scrophulariaceae-Antirrhineae): systematic and evolutionary inferences. — Amer. J. Bot75: 85–96.

    Google Scholar 

  • Ford, B. A., Ball, P. W., Ritland, K., 1991: Allozyme diversity and genetic relationships among North American members of the short-beaked taxa ofCarex sect.Vesicariae (Cyperaceae). — Syst. Bot.16: 116–131.

    Google Scholar 

  • , 1993: Genetic and macromorphologic evidence bearing on the evolution of members ofCarex sectionVesicariae (Cyperaceae) and their natural hybrids. — Canad. J. Bot.71: 486–500.

    Google Scholar 

  • , 1998a: Allozyme variation and genetic relationships among species in theCarex willdenowii complex (Cyperaceae). — Amer. J. Bot.85: 546–552.

    Google Scholar 

  • , 1998b: Relationships among species inCarex sect.Phyllostachys (Cyperaceae) based on allozyme divergence. — Pl. Syst. Evol.212: 31–51.

    Google Scholar 

  • Gottlieb, L. D., 1981: Electrophoretic evidence and plant populations. — Progr. Phytochem.7: 1–46.

    Google Scholar 

  • Hamrick, J. L., 1989: Isozymes and the analysis of genetic structure in plant populations. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 87–105. — Portland: Dioscorides Press.

    Google Scholar 

  • , 1990: Allozyme diversity in plant species. — InBrown, A. H. D., Clegg, M. T., Kahler, A. L., Wier, B. S., (Eds): Plant population genetics, breeding, and genetic resources, pp. 43–63. — Sunderland: Sinauer.

    Google Scholar 

  • , 1979: Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. — Annual Rev. Ecol. Syst.10: 173–200.

    Google Scholar 

  • , 1991: Correlations between species traits and allozyme diversity: implications for conservation biology. — InFalk, D. A., Holsinger, K. E., (Eds): Genetics and conservation of rare plants, pp. 75–86. — New York: Oxford University Press.

    Google Scholar 

  • Handel, S. N., 1976: Restricted pollen flow of two woodland herbs determined by neutron-activation analysis. — Nature260: 422–423.

    Google Scholar 

  • Karron, J. D., 1987: A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. — Evol. Ecol.1: 47–58.

    Google Scholar 

  • , 1988: Genetic structure of populations of geographically restricted and widespread species ofAstragalus (Fabaceae). — Amer. J. Bot75: 1114–1119.

    Google Scholar 

  • Kral, R., 1983: A report on some rare, threatened, or endangered forest-related vascular plants of the south. Vol. I.Isoetaceae throughEuphorbiaceae. — USDA Forest Service, Southern Region, Technical Publication R8-TP2.

  • Kükenthal, G., 1909:Cyperaceae-Caricoideae. — InEngler, A., (Ed.): Das Pflanzenreich,IV. 20, Heft 38, pp. 1–824. — Leipzig: Engelmann.

    Google Scholar 

  • Levin, D. A., 1993: Local speciation in plants: the rule not the exception. — Syst. Bot18: 197–208.

    Google Scholar 

  • Lewis, P. O., Crawford, D. J., 1995: Pleistocene refugium endemics exhibit greater allozymic diversity than widespread congeners in the genusPolygonella (Polygonaceae). — Amer. J. Bot.82: 141–149.

    Google Scholar 

  • , 1989: GENESTAT-PC V. 2.1. — Columbus: Department of Botany, Ohio State University.

    Google Scholar 

  • Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Annual Rev. Ecol. Syst.15: 65–95.

    Google Scholar 

  • Mackenzie, K. K., 1940: North AmericanCariceae. — New York: New York Botanical Garden.

    Google Scholar 

  • Mead, R. T., 1988: The design of experiments: statistical principles for practical applications. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Naczi, R. F. C., Reznicek, A. A., Ford, B. A., 1997: Morphologic, geographic, and ecologic differentiation in theCarex willdenowii complex. — Amer. J. Bot.85: 434–447.

    Google Scholar 

  • Nei, M., 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.

    Google Scholar 

  • , 1983: Estimation of fixation indices and gene diversities. — Ann. Human Genet.47: 253–259.

    Google Scholar 

  • Olmstead, R., 1989: Phylogeny, phenotypic evolution, and biogeography of theScutellaria angustifolia complex (Lamiaceae): inference from morphological and molecular data. — Syst. Bot.14: 320–338.

    Google Scholar 

  • , 1990: Biological and historical factors influencing genetic diversity in theScutellaria angustifolia complex (Labiatae). — Evolution44: 54–70.

    Google Scholar 

  • Parker, K. C., Hamrick, J. L., 1992: Genetic diversity and clonal structure in a columnar cactus,Lophocereus schottii. — Amer. J. Bot.79: 86–96.

    Google Scholar 

  • Pleasants, J. M., Wendel, J. F., 1989: Genetic diversity in a clonal narrow endemic,Erythronium propullans, and in its widespread progenitor,Erythronium albidum. — Amer. J. Bot.76: 1136–1151.

    Google Scholar 

  • Purdy, B. G., Bayer, R. J., 1995: Allozyme variation in the Athabasca sand dune endemic,Salix silicicola, and the closely related widespread species,S. alaxensis. — Syst. Bot.20: 179–190.

    Google Scholar 

  • Schell, C. M., Waterway, M. J., 1992: Allozyme variation and the genetic structure of populations of the rare sedgeCarex misera (Cyperaceae). — Pl. Spec. Biol.7: 141–150.

    Google Scholar 

  • Sherman-Broyles, S. L., Broyles, S. B., Hamrick, J. L., 1992: Geographic distribution of allozyme variation inUlmus crassifolia. — Syst. Bot.17: 33–41.

    Google Scholar 

  • Slatkin, M., 1987: Gene flow and the geographic structure of natural populations. — Science236: 787–792.

    PubMed  Google Scholar 

  • , 1989: A comparison of three indirect methods for estimating average levels of gene flow. — Evolution43: 1349–1368.

    Google Scholar 

  • Starr, J. R., 1997: The origin and phylogenetic position ofCarex sectionPhyllostachys in the genusCarex (Cyperaceae). — M. Sc. Thesis, University of Manitoba.

  • , 1995: Phylogeny and character evolution inCarex sectionPhyllostachys (Cyperaceae). — Amer. J. Bot.82: 164–165.

    Google Scholar 

  • , 1996: Phylogeny and sectional delimitation inCarex (Cyperaceae) using sequences from the internal transcribed spacer of nrDNA. — Amer. J. Bot.83: 194.

    Google Scholar 

  • , 1997: Testing phylogenetic hypotheses inCarex (Cyperaceae) using sequences from the internal transcribed spacer (ITS) region of nrDNA. — Amer. J. Bot.84: 235.

    Google Scholar 

  • Swofford, D. L., Selander, R. B., 1981: BIOSYS-1: a computer program for the analysis of allelic variation in genetics. User's manual. — Urbana: University of Illinois.

    Google Scholar 

  • Taylor, T. M. C., 1983: The sedge genera of British Columbia. — British Columbia Provincial Museum, Handbook 43.

  • Waterfall, U. T., 1954: A new species ofCarex (sect.Phyllostachyae) from Oklahoma. — Rhodora56: 21–23.

    Google Scholar 

  • Weller, S. G., Sakai, A. K., Straub, C., 1996: Allozyme diversity and genetic identity inSchiedea andAlsinidendron (Caryophyllaceae:Alsinoideae) in the Hawaiian islands. — Evolution50: 23–34.

    Google Scholar 

  • Wilkinson, L., 1987: SYSTAT: The system for statistics. — Evanston: SYSTAT, Inc.

    Google Scholar 

  • Wyatt, R., Broyles, S. B., Hamrick, J. L., Stoneburner, A., 1993: Systematic relationships withinGelsemium (Loganiaceae): evidence from isozymes and cladistics. — Syst. Bot.18: 345–355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, B.A., McQueen, D.A.R., Starr, J.R. et al. The impact of species-specific traits and phylogenetic relatedness on allozyme diversity inCarex sect.Phyllostachys (Cyperaceae). Pl Syst Evol 212, 13–29 (1998). https://doi.org/10.1007/BF00985219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985219

Key words

Navigation